Нормальный закон распределения случайных величин. Нормальное распределение случайной величины и правило трех сигм Что такое стандартная нормальная случайная величина

Рассмотрим частный случай, когда параметры распределения m = 0 .σ = 1 . Нормальное распределение N(0;1) называется стандартным нормальным распределением. В этом случае плотность распределения

(22)

Кривая распределения, построенная по формуле стандартного нормального распределения имеет колоколообразныи вид, вертикальная ось является осью симметрии, горизонтальная - асимптотой. Максимальное значение ординаты равно

При значениях аргумента х = ± 3 значения функции близки к нулю: при общей площади под кривой распределения, равной единице, в этом диапазоне лежит 99,73%. Заметим, что в диапазоне х = ± 2 лежит 95,44% площади под кривой распределения, а в диапазоне х = ±1 - 68,26%.

Рисунок 3.- Кривая стандартного нормального распределения

При изменении параметра т график сдвигается вправо или влево так, что прямая х= т - ось симметрии

Рисунок 4- Влияние параметра т на вид кривой нормального распределения

При увеличении параметра σ максимум кривой распределения снижается, при уменьшении, а кривая вытягивается вверх, при этом по условию нормировки площадь под кривой распределения остается постоянной (и равной единице)

Рисунок 5 – Влияние параметра σ на вид кривой нормального распределения.

Вновь рассмотрим стандартное нормальное распределение N(0,1). Функция такого распределения иногда называется функцией Лапласа, она имеет специальное обозначение Ф(х).Можно записать уравнение

(23)

Эnа функция табулирована. Например, Ф(2,48) = = 0,9934. График функции показан на рис.

Рисунок 6 - График функции стандартного нормального распределения

Из симметрии графика вытекает соотношение

Ф(-х) = 1-Ф(х)

Табулированы и квантили нормального распределения

Квантиль нормального распределения порядка р - это число u p , для которого Ф(u p) = p .Например,=1,645

Из симметрии графика функции стандартного нормального распределения и формулы вытекает полезное соотношение для квантилей:

u 1- p = u p

Можно установить связь между функцией распределения F(x) для распределения N(m,σ) и функцией стандартного нормального распределения:

(24)

Вероятность попадания нормально распределенной случайной величины в интервал от x 1 до x 2 определяется по формуле

Часто в расчетах надо найти вероятность того, что случайная величина Х не слишком сильно отклонится от своего математического ожидания m:

Правило «трех сигм»

Пусть, например ε = 3σ. Используя таблицы функции стандартного нормального распределения найдем:

поэтому вероятность того, что случайная величина отклонится от математического ожидания больше, чем на Зσ, ничтожно мала:



Такое событие практически невозможно. В связи с этим на практике часто используется так называемое правило «трех сигм» : отклонение нормально распределенной случайной величины от ее математического ожидания, как правило, не превышает утроенного стандартного отклонения.

Рассмотрим применение свойств нормального распределения

Пример.1 На станке-автомате изготавливаются валики номинальным диаметром 10 мм. Стандартное отклонение, характеризующее точность станка, составляет σ = 0,03 мм. Сколько в среднем валиков из ста удовлетворяют стандарту, если для этого требуется, чтобы диаметр отклонялся от номинального не более чем на 0,05 мм?

Нормальный закон распределения вероятностей

Без преувеличения его можно назвать философским законом. Наблюдая за различными объектами и процессами окружающего мира, мы часто сталкиваемся с тем, что чего-то бывает мало, и что бывает норма:


Перед вами принципиальный вид функции плотности нормального распределения вероятностей, и я приветствую вас на этом интереснейшем уроке.

Какие можно привести примеры? Их просто тьма. Это, например, рост, вес людей (и не только), их физическая сила, умственные способности и т.д. Существует «основная масса» (по тому или иному признаку) и существуют отклонения в обе стороны.

Это различные характеристики неодушевленных объектов (те же размеры, вес). Это случайная продолжительность процессов, например, время забега стометровки или превращения смолы в янтарь. Из физики вспомнились молекулы воздуха: среди них есть медленные, есть быстрые, но большинство двигаются со «стандартными» скоростями.

Далее отклоняемся от центра ещё на одно стандартное отклонение и рассчитываем высоту:

Отмечаем точки на чертеже (зелёный цвет) и видим, что этого вполне достаточно.

На завершающем этапе аккуратно чертим график, и особо аккуратно отражаем его выпуклость / вогнутость ! Ну и, наверное, вы давно поняли, что ось абсцисс – это горизонтальная асимптота , и «залезать» за неё категорически нельзя!

При электронном оформлении решения график легко построить в Экселе, и неожиданно для самого себя я даже записал короткий видеоролик на эту тему. Но сначала поговорим о том, как меняется форма нормальной кривой в зависимости от значений и .

При увеличении или уменьшении «а» (при неизменном «сигма») график сохраняет свою форму и перемещается вправо / влево соответственно. Так, например, при функция принимает вид и наш график «переезжает» на 3 единицы влево – ровнехонько в начало координат:


Нормально распределённая величина с нулевым математическим ожиданием получила вполне естественное название – центрированная ; её функция плотности – чётная , и график симметричен относительно оси ординат.

В случае изменения «сигмы» (при постоянном «а») , график «остаётся на месте», но меняет форму. При увеличении он становится более низким и вытянутым, словно осьминог, растягивающий щупальца. И, наоборот, при уменьшении график становится более узким и высоким – получается «удивлённый осьминог». Так, при уменьшении «сигмы» в два раза: предыдущий график сужается и вытягивается вверх в два раза:

Всё в полном соответствии с геометрическими преобразованиями графиков .

Нормальное распределёние с единичным значением «сигма» называется нормированным , а если оно ещё и центрировано (наш случай), то такое распределение называют стандартным . Оно имеет ещё более простую функцию плотности, которая уже встречалась в локальной теореме Лапласа : . Стандартное распределение нашло широкое применение на практике, и очень скоро мы окончательно поймём его предназначение.

Ну а теперь смотрим кино:

Да, совершенно верно – как-то незаслуженно у нас осталась в тени функция распределения вероятностей . Вспоминаем её определение :
– вероятность того, что случайная величина примет значение, МЕНЬШЕЕ, чем переменная , которая «пробегает» все действительные значения до «плюс» бесконечности.

Внутри интеграла обычно используют другую букву, чтобы не возникало «накладок» с обозначениями, ибо здесь каждому значению ставится в соответствие несобственный интеграл , который равен некоторому числу из интервала .

Почти все значения не поддаются точному расчету, но как мы только что видели, с современными вычислительными мощностями с этим нет никаких трудностей. Так, для функции стандартного распределения соответствующая экселевская функция вообще содержит один аргумент:

=НОРМСТРАСП(z)

Раз, два – и готово:

На чертеже хорошо видно выполнение всех свойств функции распределения , и из технических нюансов здесь следует обратить внимание на горизонтальные асимптоты и точку перегиба .

Теперь вспомним одну из ключевых задач темы, а именно выясним, как найти –вероятность того, что нормальная случайная величина примет значение из интервала . Геометрически эта вероятность равна площади между нормальной кривой и осью абсцисс на соответствующем участке:

но каждый раз вымучивать приближенное значение неразумно, и поэтому здесь рациональнее использовать «лёгкую» формулу :
.

! Вспоминает также , что

Тут можно снова задействовать Эксель, но есть пара весомых «но»: во-первых, он не всегда под рукой, а во-вторых, «готовые» значения , скорее всего, вызовут вопросы у преподавателя. Почему?

Об этом я неоднократно рассказывал ранее: в своё время (и ещё не очень давно) роскошью был обычный калькулятор, и в учебной литературе до сих пор сохранился «ручной» способ решения рассматриваемой задачи. Его суть состоит в том, чтобы стандартизировать значения «альфа» и «бета», то есть свести решение к стандартному распределению:

Примечание : функцию легко получить из общего случая с помощью линейной замены . Тогда и:

и из проведённой замены как раз следует формула перехода от значений произвольного распределения – к соответствующим значениям стандартного распределения.

Зачем это нужно? Дело в том, что значения скрупулезно подсчитаны нашими предками и сведены в специальную таблицу, которая есть во многих книгах по терверу. Но ещё чаще встречается таблица значений , с которой мы уже имели дело в интегральной теореме Лапласа :

Если же в нашем распоряжении есть таблица значений функции Лапласа , то решаем через неё:

Дробные значения традиционно округляем до 4 знаков после запятой, как это сделано в типовой таблице. И для контроля есть Пункт 5 макета .

Напоминаю, что , и во избежание путаницы всегда контролируйте , таблица КАКОЙ функции перед вашими глазами.

Ответ требуется дать в процентах, поэтому рассчитанную вероятность нужно умножить на 100 и снабдить результат содержательным комментарием:

– с перелётом от 5 до 70 м упадёт примерно 15,87% снарядов

Тренируемся самостоятельно:

Пример 3

Диаметр подшипников, изготовленных на заводе, представляет собой случайную величину, распределенную нормально с математическим ожиданием 1,5 см и средним квадратическим отклонением 0,04 см. Найти вероятность того, что размер наугад взятого подшипника колеблется от 1,4 до 1,6 см.

В образце решения и далее я буду использовать функцию Лапласа, как самый распространённый вариант. Кстати, обратите внимание, что согласно формулировке, здесь можно включить концы интервала в рассмотрение. Впрочем, это не критично.

И уже в этом примере нам встретился особый случай – когда интервал симметричен относительно математического ожидания. В такой ситуации его можно записать в виде и, пользуясь нечётностью функции Лапласа, упростить рабочую формулу:


Параметр «дельта» называют отклонением от математического ожидания, и двойное неравенство можно «упаковывать» с помощью модуля :

– вероятность того, что значение случайной величины отклонится от математического ожидания менее чем на .

Хорошо то решение, которое умещается в одну строчку:)
– вероятность того, что диаметр наугад взятого подшипника отличается от 1,5 см не более чем на 0,1 см.

Результат этой задачи получился близким к единице, но хотелось бы ещё бОльшей надежности – а именно, узнать границы, в которых находится диаметр почти всех подшипников. Существует ли какой-нибудь критерий на этот счёт? Существует! На поставленный вопрос отвечает так называемое

правило «трех сигм»

Его суть состоит в том, что практически достоверным является тот факт, что нормально распределённая случайная величина примет значение из промежутка .

И в самом деле, вероятность отклонения от матожидания менее чем на составляет:
или 99,73%

В «пересчёте на подшипники» – это 9973 штуки с диаметром от 1,38 до 1,62 см и всего лишь 27 «некондиционных» экземпляров.

В практических исследованиях правило «трёх сигм» обычно применяют в обратном направлении: если статистически установлено, что почти все значения исследуемой случайной величины укладываются в интервал длиной 6 стандартных отклонений, то появляются веские основания полагать, что эта величина распределена по нормальному закону. Проверка осуществляется с помощью теории статистических гипотез .

Продолжаем решать суровые советские задачи:

Пример 4

Случайная величина ошибки взвешивания распределена по нормальному закону с нулевым математическим ожиданием и стандартным отклонением 3 грамма. Найти вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей по модулю 5 грамм.

Решение очень простое. По условию, и сразу заметим, что при очередном взвешивании (чего-то или кого-то) мы почти 100% получим результат с точностью до 9 грамм. Но в задаче фигурирует более узкое отклонение и по формуле :

– вероятность того, что очередное взвешивание будет проведено с ошибкой, не превышающей 5 грамм.

Ответ :

Прорешанная задача принципиально отличается от вроде бы похожего Примера 3 урока о равномерном распределении . Там была погрешность округления результатов измерений, здесь же речь идёт о случайной погрешности самих измерений. Такие погрешности возникают в связи с техническими характеристиками самого прибора (диапазон допустимых ошибок, как правило, указывают в его паспорте) , а также по вине экспериментатора – когда мы, например, «на глазок» снимаем показания со стрелки тех же весов.

Помимо прочих, существуют ещё так называемые систематические ошибки измерения. Это уже неслучайные ошибки, которые возникают по причине некорректной настройки или эксплуатации прибора. Так, например, неотрегулированные напольные весы могут стабильно «прибавлять» килограмм, а продавец систематически обвешивать покупателей. Или не систематически ведь можно обсчитать. Однако, в любом случае, случайной такая ошибка не будет, и её матожидание отлично от нуля.

…срочно разрабатываю курс по подготовке продавцов =)

Самостоятельно решаем обратную задачу:

Пример 5

Диаметр валика – случайная нормально распределенная случайная величина, среднее квадратическое отклонение ее равно мм. Найти длину интервала, симметричного относительно математического ожидания, в который с вероятностью попадет длина диаметра валика.

Пункт 5* расчётного макета в помощь. Обратите внимание, что здесь не известно математическое ожидание, но это нисколько не мешает решить поставленную задачу.

И экзаменационное задание, которое я настоятельно рекомендую для закрепления материала:

Пример 6

Нормально распределенная случайная величина задана своими параметрами (математическое ожидание) и (среднее квадратическое отклонение). Требуется:

а) записать плотность вероятности и схематически изобразить ее график;
б) найти вероятность того, что примет значение из интервала ;
в) найти вероятность того, что отклонится по модулю от не более чем на ;
г) применяя правило «трех сигм», найти значения случайной величины .

Такие задачи предлагаются повсеместно, и за годы практики мне их довелось решить сотни и сотни штук. Обязательно попрактикуйтесь в ручном построении чертежа и использовании бумажных таблиц;)

Ну а я разберу пример повышенной сложности:

Пример 7

Плотность распределения вероятностей случайной величины имеет вид . Найти , математическое ожидание , дисперсию , функцию распределения , построить графики плотности и функции распределения, найти .

Решение : прежде всего, обратим внимание, что в условии ничего не сказано о характере случайной величины. Само по себе присутствие экспоненты ещё ничего не значит: это может оказаться, например, показательное или вообще произвольное непрерывное распределение . И поэтому «нормальность» распределения ещё нужно обосновать:

Так как функция определена при любом действительном значении , и её можно привести к виду , то случайная величина распределена по нормальному закону.

Приводим. Для этого выделяем полный квадрат и организуем трёхэтажную дробь :


Обязательно выполняем проверку, возвращая показатель в исходный вид:

, что мы и хотели увидеть.

Таким образом:
– по правилу действий со степенями «отщипываем» . И здесь можно сразу записать очевидные числовые характеристики:

Теперь найдём значение параметра . Поскольку множитель нормального распределения имеет вид и , то:
, откуда выражаем и подставляем в нашу функцию:
, после чего ещё раз пробежимся по записи глазами и убедимся, что полученная функция имеет вид .

Построим график плотности:

и график функции распределения :

Если под рукой нет Экселя и даже обычного калькулятора, то последний график легко строится вручную! В точке функция распределения принимает значение и здесь находится

по сравнению с другими видами распределений. Главной особенностью этого распределения является то, что к этому закону стремятся все другие законы распределений при бесконечном повторении количества испытаний. Как получается это распределение?

Представим себе, что, взяв ручной динамометр, Вы расположились в самом людном месте Вашего города. И каждому, кто проходит мимо, Вы предлагаете измерить свою силу, сжав динамометр правой или левой рукой. Показания динамометра Вы аккуратно за-писываете. Через некоторое время, при достаточно большом количестве испытаний, Вы нанесли на ось абсцисс показания динамометра, а на ось ординат – количество людей, кото-рые "выжали" это показание. Полученные точки соединили плавной линией. В результате получается кривая, изображенная на рис.9.8 . Вид этой кривой не будет особо изменяться при увеличении времени опыта. Более того, с некоторого момента новые значения будут только уточнять кривую, не изменяя ее формы.


Рис. 9.8.

Теперь переместимся с нашим динамометром в атлетический зал и повторим эксперимент. Теперь максимум кривой сместится вправо, левый конец будет несколько затянут, в то время как правый конец ее будет более крутой (рис.9.9).


Рис. 9.9.

Заметим, что максимальная частота для второго распределения (точка В) будет ниже, чем максимальная частота первого распределения (точка А). Это можно объяснить тем, что общее количество людей, посещающих атлетический зал, будет меньше, чем количество людей, которое прошли возле экспериментатора в первом случае (в центре города в достаточно людном месте). Максимум сместился вправо, так как атлетические залы посещают физически более сильные люди по сравнению с общим фоном.

И, наконец, посетим школы, детские сады и дома престарелых с той же целью: выявить силу рук посетителей этих мест. И опять кривая распределения будет иметь похожую форму, но теперь, очевидно, более крутым будет ее левый конец, а правый более затянут. И как во втором случае, максимум (точка С) будет ниже точки А (рис.9.10).


Рис. 9.10.

Это замечательное свойство нормального распределения – сохранять форму кривой плотности распределения вероятностей (рис. 8 – 10) было замечено и описано в 1733 году Муавром, а затем исследовано Гауссом.

В научных исследованиях, в технике, в массовых явлениях или экспериментах, когда речь идет о многократно повторяющихся случайных величинах при неизменных условиях опыта, говорят, что результаты испытаний испытывают случайное рассеяние, подчиняющееся закону нормальной кривой распределения

(21)

Где - это наиболее часто встречающееся событие. Как правило, в формулу (21) вместо параметра ставят . Причем, чем длин-нее экспериментальный ряд, тем меньше параметр будет отличаться от математического ожидания. Площадь под кривой (рис.9.11) при-нимается равной единице. Площадь , отвечающая какому-либо интервалу оси абсцисс, численно равна вероятности попадания случайного результата в данный интервал .


Рис. 9.11.

Функция нормального распределения имеет вид


(22)

Заметим, что нормальная кривая (рис.9.11) симметрична относительно прямой и асимптотически приближается к оси ОХ при .

Вычислим математическое ожидание для нормального закона


(23)

Свойства нормального распределения

Рассмотрим основные свойства этого важнейшего распределения.

Свойство 1 . Функция плотности нормального распределения (21) определения на всей оси абсцисс.

Свойство 2 . Функция плотности нормального распределения (21) больше нуля для любого из области определения ().

Свойство 3 . При бесконечном увеличении (уменьшении) функция распределения (21) стремится к нулю .

Свойство 4 . При функция распределения , заданная (21), имеет наибольшее значение , равное

(24)

Свойство 5 . График функции (рис.9.11) симметричен относительно прямой .

Свойство 6 . График функции (рис.9.11) имеет по две точки перегиба симметричные относительно прямой :

(25)

Свойство 7 . Все нечетные центральные моменты равны нулю. Заметим, что используя свойство 7, определяют асимметрию функции по формуле . Если , то делают вывод , что исследуемое распределение симметрично относительно прямой . Если , то говорят, что ряд смещен вправо (более пологая правая ветвь графика или затянута). Если , тогда считают, что ряд смещен влево (более пологая левая ветвь графика рис.9.12).


Рис. 9.12.

Свойство 8 . Эксцесс распределения равен 3. Часто на практике вычисляют и по близости этой величины к нулю определяют степень "сжатия" или "размытости" графика (рис.9.13). А так как связан с , то, в конечном итоге характеризует степень рассеяния частоты данных. А так как определяет

Краткая теория

Нормальным называют распределение вероятностей непрерывной случайной величины , плотность которого имеет вид:

где – математическое ожидание , – среднее квадратическое отклонение .

Вероятность того, что примет значение, принадлежащее интервалу :

где – функция Лапласа :

Вероятность того, что абсолютная величина отклонения меньше положительного числа :

В частности, при справедливо равенство:

При решении задач, которые выдвигает практика, приходится сталкиваться с различными распределениями непрерывных случайных величин .

Кроме нормального распределения, основные законы распределения непрерывных случайных величин:

Пример решения задачи

На станке изготавливается деталь. Ее длина - случайная величина, распределенная по нормальному закону с параметрами , . Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно , будут лежать практически все размеры деталей?

вступайте в группу ВК .

Решение:

Вероятность того, что случайная величина, распределенная по нормальному закону, будет находиться в интервале :

Получаем:

Вероятность того, что случайная величина, распределенная по нормальному закону, отклонится от среднего не более чем на величину :

По условию

:

Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт,

Нормальное распределение - наиболее часто встречающийся вид распределения. С ним приходится встречаться при анализе погрешностей измерений, контроле технологических процессов и режимов, а также при анализе и прогнозировании различных явлений в биологии , медицине и других областях знаний.

Термин «нормальное распределение» применяется в условном смысле как общепринятый в литературе, хотя и не совсем удачный. Так, утверждение, что какой-то признак подчиняется нормальному закону распределения, вовсе не означает наличие каких-либо незыблемых норм, якобы лежащих в основе явления, отражением которого является рассматриваемый признак, а подчинение другим законам распределения не означает какую-то анормальность данного явления.

Главная особенность нормального распределения состоит в том, что оно является предельным, к которому приближаются другие распределения. Нормальное распределение впервые открыто Муавром в 1733 году. Нормальному закону подчиняются только непрерывные случайные величины. Плотность нормального закона распределения имеет вид .

Математическое ожидание для нормального закона распределения равно . Дисперсия равна .

Основные свойства нормального распределения.

1. Функция плотности распределения определена на всей числовой оси Ох , то есть каждому значению х соответствует вполне определённое значение функции.

2. При всех значениях х (как положительных, так и отрицательных) функция плотности принимает положительные значения, то есть нормальная кривая расположена над осью Ох .

3. Предел функции плотности при неограниченном возрастании х равен нулю, .

4. Функция плотности нормального распределения в точке имеет максимум .

5. График функции плотности симметричен относительно прямой .

6. Кривая распределения имеет две точки перегиба с координатами и .

7. Мода и медиана нормального распределения совпадают с математическим ожиданием а .

8. Форма нормальной кривой не изменяется при изменении параметра а .

9. Коэффициенты асимметрии и эксцесса нормального распределения равны нулю.

Очевидна важность вычисления этих коэффициентов для эмпирических рядов распределения, так как они характеризуют скошеннность и крутость данного ряда по сравнению с нормальным.

Вероятность попадания в интервал находится по формуле , где нечётная табулированная функция.

Определим вероятность того, что нормально распределённая случайная величина отклоняется от своего математического ожидания на величину, меньшую , то есть найдём вероятность осуществления неравенства , или вероятность двойного неравенства . Подставляя в формулу, получим

Выразив отклонение случайной величины Х в долях среднего квадратического отклонения, то есть положив в последнем равенстве, получим .


Тогда при получим ,

при получим ,

при получим .

Из последнего неравенства следует, что практически рассеяние нормально распределённой случайной величины заключено на участке . Вероятность того, что случайная величина не попадёт на этот участок, очень мала, а именно равна 0,0027, то есть это событие может произойти лишь в трёх случаях из 1000. Такие события можно считать практически невозможными. На приведённых рассуждениях основано правило трёх сигм , которое формулируется следующим образом: если случайная величина имеет нормальное распределение, то отклонение этой величины от математического ожидания по абсолютной величине не превосходит утроенного среднего квадратического отклонения .

Пример 28 . Деталь, изготовленная автоматом, считается годной, если отклонение её контролируемого размера от проектного не превышает 10 мм. Случайные отклонения контролируемого размера от проектного подчинены нормальному закону распределения со средним квадратическим отклонением мм и математическим ожиданием . Сколько процентов годных деталей изготавливает автомат?

Решение. Рассмотрим случайную величину Х - отклонение размера от проектного. Деталь будет признана годной, если случайная величина принадлежит интервалу . Вероятность изготовления годной детали найдём по формуле . Следовательно, процент годных деталей, изготавливаемых автоматом, равен 95,44%.

Биномиальное распределение

Биномиальным является распределение вероятностей появления m числа событий в п независимых испытаниях, в каждом из которых вероятность появления события постоянна и равна р . Вероятность возможного числа появлений события вычисляется по формуле Бернулли: ,

где . Постоянные п и р , входящие в это выражение, параметры биномиального закона. Биномиальным распределением описывается распределение вероятностей дискретной случайной величины.

Основные числовые характеристики биномиального распределения. Математическое ожидание равно . Дисперсия равна . Коэффициенты асимметрии и эксцесса равны и . При неограниченном возрастании числа испытаний А и Е стремятся к нулю, следовательно, можно предположить, что биномиальное распределение сходится к нормальному с возрастанием числа испытаний.

Пример 29 . Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А в одном испытании, если дисперсия числа появлений в трёх испытаниях равна 0,63.

Решение. Для биномиального распределения . Подставим значения, получим отсюда или тогда и .

Распределение Пуассона

Закон распределения редких явлений

Распределение Пуассона описывает число событий m , происходящих за одинаковые промежутки времени при условии, что события происходят независимо друг от друга с постоянной средней интенсивностью. При этом число испытаний п велико, а вероятность появления события в каждом испытании р мала. Поэтому распределение Пуассона называют законом редких явлений или простейшим потоком. Параметром распределения Пуассона является величина , характеризующая интенсивность появления событий в п испытаниях. Формула распределения Пуассона .

Пуассоновским распределением хорошо описываются число требований на выплату страховых сумм за год, число вызовов, поступивших на телефонную станцию за определённое время, число отказов элементов при испытании на надёжность, число бракованных изделий и так далее.

Основные числовые характеристики для распределения Пуассона. Математическое ожидание равно дисперсии и равно а . То есть . Это является отличительной особенностью этого распределения. Коэффициенты асимметрии и эксцесса соответственно равны .

Пример 30 . Среднее число выплат страховых сумм в день равно двум. Найти вероятность того, что за пять дней придётся выплатить: 1) 6 страховых сумм; 2) менее шести сумм; 3) не менее шести. или экспоненциальное распределение.

Это распределение часто наблюдается при изучении сроков службы различных устройств, времени безотказной работы отдельных элементов, частей системы и системы в целом, при рассмотрении случайных промежутков времени между появлениями двух последовательных редких событий.

Плотность показательного распределения определяется параметром , который называют интенсивностью отказов . Этот термин связан с конкретной областью приложения - теорией надёжности.

Выражение интегральной функции показательного распределения можно найти, используя свойства дифференциальной функции:

Математическое ожидание показательного распределения , дисперсия , среднее квадратическое отклонение . Таким образом, для этого распределения характерно, что среднее квадратическое отклонение численно равно математическому ожиданию. При любом значении параметра коэффициенты асимметрии и эксцесса - постоянные величины .

Пример 31 . Среднее время работы телевизора до первого отказа равно 500 часов. Найти вероятность того, что наудачу взятый телевизор проработает без поломок более 1000 часов.

Решение. Так как среднее время работы до первого отказа равно 500, то . Искомую вероятность найдём по формуле .