Современные представления о геноме человека, его изучение. Реферат: Современная концепция гена Современное представление о строении и функции гена

Экспрессия гена – это реализация генетической информации, закодированной в ДНК, путём её транскрипции и трансляции. Транскрипция – первый этап экспрессии генов. Заключается она в переводе информации, содержащейся в гене на РНК путём синтеза последней на одной нити ДНК гена. В результате транскрипции синтезируются все виды РНК – информационная (иРНК), рибосомальная (рРНК), транспортная (тРНК) и другие (регуляторные, малые ядерные и пр.). Все они принимают участие в экспрессии генов, но только иРНК переносит информацию о строении белка с нуклеотидного «текста» ДНК на аминокислотный «текст» белка. Все остальные виды РНК обеспечивают эффективное осуществление этого процесса.

Суть транскрипции заключается в следующем: специальные ферменты подготавливают молекулу ДНК в области гена к транскрипции (раскручивают спираль ДНК, разрывают водородные связи между нитями и т.д.). Фермент ДНК-зависимая РНК-полимераза синтезирует РНК на матричной нити ДНК от стартовой точки до точки окончания транскрипции. Синтез РНК заключается в последовательном наращивании в ней нуклеотидов комплементарных матричной нити ДНК. Исключение составляет урацил РНК, который вставляется против аденина матричной нити ДНК.

В транскрипции принимают участие множество ферментов, но непосредственно синтез РНК осуществляет фермент ДНК-зависимая РНК-полимераза (или просто РНК-полимераза) . У прокариот все виды РНК (иРНК, рРНК, тРНК) синтезируются одной РНК-полимеразой, а у эукариот они синтезируются тремя разными ферментами: РНК-полимеразойI, РНК-полимеразойIIи РНК-полимеразойIII.

Информационные РНК у эукариот транскрибируются РНК-полимеразой II .

Транскрипция это сложный многоэтапный процесс и одна РНК-полимераза не в состоянии полностью обеспечить его. На разных этапах транскрипции к РНК-полимеразе присоединяются и, наоборот, отщепляются различные белковые субъединицы, которые модифицируют её активность в соответствии с требованиями данного этапа.

Транскрипция, как и все процессы матричного синтеза у про- и эукариот, состоит из трёх этапов – инициации, элонгации и терминации. В дальнейшем процесс транскрипции будем рассматривать только у эукариот Рассмотрим самый первый этап транскрипции.

3. Периоды транскрипции.

а. Инициация.

Инициация – это подготовительный этап. У про- и эукариот в этой стадии происходят множество синхронизированных во времени процессов. Рассмотрим два из них.

1. Формирование инициаторного комплекса.

2. Образование «транскрипционного глазка».

У про- и эукариот формирование инициаторного комплекса происходит на промоторе . Сама РНК-полимераза, как правило, не может связаться с промотором. Поэтому вначале специальный белок взаимодействует со специфической областью на промоторе. В этой области располагается определённая последовательность нуклеотидов. Она различна у про- и эукариот. У прокариот эта последовательность носит названиебокс Прибнова . У эукариот в специфической области промотора довольно часто встречается следующая последовательность нуклеотидов – ТАТА. Отсюда и название этого участка промотора –ТАТА-бокс . К специальному белку, осевшему на промоторе, присоединяется РНК-полимераза и целый ряд других белков, которые участвуют в подготовке синтеза РНК. Т. обр. на первом этапе на промоторе формируется сложный комплекс, который состоит специального белка осевшего на промотор, РНК-полимеразы и нескольких белков (у эукариот их больше), которые носят названиетранскрипционные факторы (ТФ). Их несколько – ТФ1, ТФ2 ТФ3 и т.д.(рис. 53). У эукариот этих факторов намного больше, чем у прокариот. Совокупность состоящая из специального белка, транскрипционных факторов и РНК-полимеразы носит названиеинициаторный комплекс . После его образования начинаетсяформирование вилки транскрипции . Ферменты комплекса (ТФ1,ТФ2 и др.)раскручивают спираль ДНК,разрывают водородные связи между нитями. Нити расходятся. В результате формируетсятранскрипционный «глазок» с вилкой транскрипции. Разошедшие нити этой вилки прочно фиксируются специальными белками (SSB), которые могут не входить в инициаторный комплекс (рис. 54).

РНК-полимераза

Специальный белок

Промотор

Инициаторный комплекс

Промотор

Т А Т А

Рис. 53. Присоединение РНК-полимеразы и транскрипционных факторов к ТАТА-боксу промотора у эукариот.

Транскрипционный «глазок»

Белки фиксирующие

разошедшие нити

5’ Смысловая нить 3’

3’ Матричная нить 5’

РНК-полимераза и

РНК белки

Рис. 54. Транскрипционный «глазок».

У прокариот инициаторный комплекс, состоит примерно из пяти субъединиц-полипептидов и называется голофермент (холофермент) . В комплексе имеется сигма-субъединица (СС) или сигма-фактор. Это не постоянная единица комплекса. Она может выходить из комплекса, тогда комплекс называется кор-фермент и вновь входить в него. Функция СС заключается в том, что он первый связывается с промотором, затем к нему присоединяется кор-фермент. Без СС кор-фермент практически не взаимодействует с промотором (или взаимодействует очень слабо). Другая функция СС заключается в том, что этот белок приводит к стойким изменениям в структуре других полипептидов комплекса, в результате чего голофермент приобретает способность раскручивать спираль ДНК, разрывать водородные связи между нитями ДНК т.е.формировать вилку транскрипции . СС находится в голоферменте только на этапе инициации. Обеспечив связывание комплекса с промотором, она через некоторое время после начала транскрипции покидает комплекс и присоединяется к новым кор-ферментам (см. далее).

+ =

Рис. 55. РНК-полимераза в зависимости от присоединения к ней сигма субъединицы будет иметь различную структуру и функцию.

У эукариот инициаторный комплекс более сложный, чем у прокариот. Помимо фермента РНК-полимеразы в него входят более 10 полипептидных субъединиц. У них различная функция. Часть из них, также как и СС прокариот, связываются с промотором. Затем на них осаждается РНК-полимераза. Другие субъединицы участвуют в формировании вилки транскрипции и т.д.

Следует отметить, что фермент РНК-полимераза про- и эукариот имеет активный центр, который контролирует связывание нуклеотидов первичного транскрипта между собой. В случае его блокады активность фермента падает. Некоторые антибиотики, например рифампицин и его производные подавляют инициацию транскрипции специфически связываясь с активным центром в РНК-полимеразе. Интересно то, что некоторые бактерии оказались не чувствительны к антибиотику. Исследования показали, что у таких бактерий РНК-полимераза имеет небольшое изменение в структуре. Это изменение не мешает синтезировать олигонуклеотид, но не даёт возможности соединиться с активным центром антибиотику.

После образования транскрипционного глазка начинается следующий этап синтеза РНК – элонгация.

б. Элонгация.

Чаще всего начинается с присоединения к транскрипционному комплексу специальных белков – факторов элонгации, которые запускают процесс синтеза РНК. Точка на ДНК, где начинается синтез РНК называется стартовой точкой.

РНК-полимераза вместе с белками двигается по нити ДНК последовательно раскручивая спираль ДНК. После синтеза РНК нити ДНК вновь конденсируются. Деконденсированной (свободной) в транскрипционном глазке находится нить ДНК протяженностью около 20 нуклеотидов. Синтез молекулы РНК идёт от 5 ’ конца синтезированной РНК к 3 ’ её концу. Т.е. при репликации (синтез ДНК) и при транскрипции наращивание новых нуклеотидов идёт с 3 ’ конца синтезируемой цепи ДНК или РНК. Нить ДНК, на которой синтезируется РНК, называется плюс (+) нитью, кодогенной, антисмысловой, матричной цепью (рис. 56). Скорость синтеза РНК – примерно 30 нуклеотидов в секунду.

РНК-полимераза Вилка транскрипции Терминатор

Направление синтеза

Промотор

5 конец РНК3 ’ конец РНК

Рис. 56. Элонгация.

Как правило, у прокариот для всех генов одной хромосомы матричной является одна и та же цепь ДНК. У эукариот матричными могут быть обе нити ДНК.

в. Терминация.

Несмотря на многочисленные исследования последнего этапа транскрипции ясного представления о его механизме пока не получено. Если обобщить имеющиеся, то можно сделать вывод что у большинства про- и эукариот терминация осуществляется несколькими способами. Сущность их одна – в зоне терминатора располагаются специальные элементы, которые останавливают транскрипцию. Таких элементов в настоящее время найдено несколько. Назовём только наиболее исследованные. Их три.

1. В зоне терминации располагается область богатая ГЦ парами .

Химические связи этих нуклеотидов с комплементарными нуклеотидами в транскрипте существенно слабее, чем связи АТ. Это облегчает отрыв синтезированной РНК от ДНК.

2. В терминаторе имеются «шпильки ДНК».

Другой механизм, связан с имеющимися в области терминатора последовательностями нуклеотидов, которые носят название – нвертированные повторы (см. рис. 57, А). Это два участка молекулы ДНК, следующие друг за другом, имеющие одинаковую последовательность нуклеотидов, но расположенные в противоположной (обратной) ориентации. Так например, последовательности, представленные на рисунке 57 (А), являются инвертированными, так как при их чтении от 5’ к 3’ концу она идентична в обоих цепях. Такое расположение нуклеотидов в ДНК терминатора приводит к тому, что при их считывании на РНК образуются участки с комплементарными последовательностями нуклеотидов (рис. 57, Б). Последние соединяются между собой и формируют, фигуру, которая носит название «шпилька» (см. рис. 57, В). Эта шпилька, сформированная на пути РНК-полимеразы, прекращает её движение. В некоторых случаях «шпильку» распознаёт специальный белок, который движется по вновь синтезированной цепочки РНК вслед за РНК-полимеразой. Обнаружив шпильку, белок прекращает движение РНК-полимераза.

У прокариотов инвертированные повторы обнаруживаются практически в каждом терминаторе. В последнее время появились данные о более сложных механизмах терминации транскрипции у эукариот.

3. Бессмысленные (нонсенс) кодоны . Они не кодируют никакую аминокислоту. Предполагают, что опознав их РНК-полимераза прекращает синтез РНК.

Последовательность нуклеотидов в ДНК, которая находится между стартовой точкой и терминатором называется единицей транскрипции. Транскрибируется, как правило, одна из двух цепей ДНК. Могут, но редко транскрибироваться обе цепи одного гена.

Формирующаяся РНК на нити ДНК носит название транскрипт или РНК-транскрипт.

  • 10. Клинические варианты нарушений чувствительности в зависимости от очага поражения.
  • 11. Понятие о рефлексе и рефлекторной дуге. Обратная афферентация. Схема простого и сложного рефлекса. Характеристика врожденных рефлексов.
  • 12. Современные представления о двигательном анализаторе. Движения и их расстройства. Мышечный тонус и его изменения. Методика обследования.
  • 13. Симптомы периферического и центрального параличей.
  • 14. Симптомы поражения пирамидного анализатора в зависимости от локализации патологического процесса.
  • 15. Альтернирующие синдромы, возникающие при поражении в области ствола в зависимости уровней.
  • 16. Бульбарные и псевдобульбарные параличи. Рефлексы орального автоматизма.
  • 17. Симптомы поражения корешков, сплетений, периферических нервов.
  • 19. Анатомофизиологические особенности мозжечка. Восходящие и нисходящие проводящие пути. Симптомы и синдромы поражения мозжечка. Методика обследования.
  • 20. Классификация черепно-мозговых нервов, строение ромбовидной ямки. 1 пара, строение, функция, симптомы поражения, методика обследования.
  • 21. 2 Пара черепно-мозговых нервов, строение, функция, симптомы поражения, методика обследования.
  • 22. 3 Пара черепно-мозговых нервов, строение, функции, методика обследования.
  • 23. 4 И 6 пары черепно-мозговых нервов, строение, функции, симптомы поражения, методика обследования. Иннервация взора. Клинические проявления поражения медиального продольного пучка.
  • 24. Клинические проявления поражения медиального продольного пучка.
  • 25. 5 Пара черепно-мозговых нервов, строение, функции, симптомы поражения, методика обследования.
  • 26. 7 Пара черепных нервов, строение, функции, симптомы поражения, методика обследования.
  • 27. 8 Пара черепных нервов, строение, функции, симптомы поражения, методика обследования.
  • 28. 9 И 10 пары черепных нервов, строение, функции, симптомы поражения, методика обследования.
  • 29. 11 И 12 пары черепных нервов строение, функции, симптомы поражения. Методика обследования.
  • 31. Методика обследования вегетативных функций, основные рефлексы и пробы.
  • 32. Архитектоника коры мозга. Проекционные и ассоциативные поля коры. Понятие о доминантности полушарий. Представление о системной локализации функций в коре больших полушарий.
  • 33. Симптомы и синдромы поражения ассоциативных полей коры (апраксия, астереогноз, алексия, аграфия, акалькулия и др.)
  • 34. Формирование и расстройства речевых функций (афазия, дизартрия).
  • 35. Внутричерепная гипертензия, менингеальный синдром.
  • 36. Давление и состав ликвора в норме при патологии. Ликвородинамические пробы.
  • 37. Методы функциональной диагностики: электроэнцефалография, реоэнцефалография, электромиография, эхоэнцефалография.
  • 38. Рентгенологические методы обследования. Компьютерная томография, магнитно-резонансная томография, пэт.
  • 39. Классификация сосудистых заболеваний нервной системы.
  • 40. Начальные проявления недостаточности кровоснабжения мозга, диагностика, лечение.
  • 41. Преходящие нарушения мозгового кровообращения, клиника, лечение.
  • 42. Ишемический инсульт: патогенез, клинические проявления в зависимости от очага поражения.
  • 43. Геморрагический инсульт - этиологии; патогенез, клиника. Субарахноидальное кровоизлияние.
  • 44. Дифференциально-диагностические признаки различных форм инсульта.
  • 45. Недифференцированное и дифференцированное лечение в острой стадии инсульта.
  • 46. Нарушение кровообращение в спинном мозге: этиология, клиника, лечение.
  • 47. Первичные и вторичные гнойные менингиты: клинические проявления, лечение.
  • 48. Серозные менингиты: лимфоцитарный, энтеровирусный, паротитный. Туберкулезный менингит. Клиника, лечение.
  • 49. Арахноидиты: классификация, клиника, лечение.
  • 50. Эпидемический энцефалит Экономо: этиология, патогенез, клиника, лечение.
  • 51. Клещевой энцефалит: этиология, патогенез, клиника, лечение.
  • 52. Особенности течения, клиника полисезонных, поствакцинальных энцефалитов. Ревматический энцефалит: клиника, лечение.
  • 53. Миелиты: клиника, диагностика, лечение. Профилактика осложнений.
  • 54. Острый полиомиелит: клиника и формы заболевания, лечение и профилактика.
  • 55. Ранние и поздние формы нейросифилиса: клиника, диагностика, лечение.
  • 56. Опоясывающий герпес: этиология, патогенез, клинические формы, лечение.
  • 57. Боковой амиотрофический склероз: этиология, патогенез, клиника, лечение.
  • 58. Рассеянный склероз: этиология, клиника, лечение, прогноз.
  • 59. Острый рассеянный энцефаломиелит и болезнь Шильдера: клиника, лечение.
  • 60. Строение позвоночного столба, позвоночного сегмента. Этиология, патогенез развития корешковых и спинальных синдромов при остеохондрозе.
  • 61. Неврологические проявления остеохондрозов на различных уровнях. Лечение остеохондроза в зависимости от уровня локализации процесса и ведущих клинических проявлений.
  • 62. Туннельные синдромы верхних и нижних конечностей.
  • 63. Невриты локтевого, лучевого, срединного нервов. Этиология, клиника, лечение.
  • 64. Невриты седалищного, большеберцового, малоберцового нервов. Этиология, клиника, лечение.
  • 65. Неврит тройничного нерва. Этиология, клиника, лечение.
  • 66. Невриты и невропатии лицевого нерва. Этиология, клиника, лечение.
  • 67. Полирадикулоневропатия Гийена-Барре. Клиника, лечение. Восходящий паралич Ландри.
  • 68. Токсические и метаболические полирадикулоневропатии; дифтерийные, диабетические, алкогольные. Клиника, лечение.
  • 69. Гистогенетическая классификация опухолей мозга. Этиология и патогенез, характеристика роста. Общемозговые симптомы, выявляемые при опухолях головного мозга.
  • 70. Дополнительные методы обследования в диагностике опухолей головного и спинного мозга.
  • 71. Клинические проявления субтенториальных опухолей мозга.
  • 72. Опухоли гипофизарно-гипоталамической области. Клиника, основные стадии развития.
  • 73. Опухоли больших полушарий. Симптомы и синдромы поражений.
  • 74. Экстра- и интрамедуллярные опухоли спинного мозга.
  • 75. Клинические особенности опухолей спинного мозга в зависимости от уровня локализации.
  • 76. Метастатические опухоли головного и спинного мозга: клинические особен¬ности проявления, диагностика, лечение.
  • 77. Абсцесс головного мозга. Этиология, клиника, диагностика, лечение, профи-лактика
  • 78. Паразитарные заболевания мозга эхинококкоз, цистециркоз, токсоплазмоз. Клиника, диагностика, лечение, профилактика.
  • 79. Закрытая черепно-мозговая травма; сотрясение; клиника, диагностика, лечение.
  • 80. Ушиб, сдавление головного мозга: клиника, диагностика, лечение.
  • 81. Клинические особенности открытых черепно-мозговых травм, травм позвоночника и спинного мозга.
  • 82. Сирингомиелия: этиология, патогенез, клиника, лечение, прогноз.
  • 83. Миастения. Этиология, клиника, лечение.
  • 84. Болезнь Паркинсона, этиология, клиника, лечение.
  • 85. Гепато-церебральная дистрофия. Этиология, клиника, лечение.
  • 86. Этиология и патогенез эпилепсии. Классификация эпилептических приступов. Клиника эпилептических приступов.
  • 87. Эпилептический статус, клиника, лечение. Диагностика и лечение эпилепсии.
  • 88. Мигрень: патогенез, формы, лечение.
  • 90. Токсические поражения нервной системы, отравление окисью углерода, метиловым спиртом.
  • 91. Ботулизм: этиология, клиника, лечение, профилактика.
  • Типичные признаки ботулизма
  • Диагностика ботулизма
  • Ботулизм лечение
  • Специфическое лечение ботулизма
  • Профилактика ботулизма
  • Прогноз
  • 92. Поражение нервной системы, обусловленное вибрационным воздействием.
  • 93. Радиационное поражение нервной системы. Этиология, клиника, лечение.
  • 94. Неврозы: этиология, патогенез, классификация, клиника, профилактика.
  • 95. Поражение нервной системы при спиДе.
  • 96. Современные представления о молекулярной организации генома. Понятие о гене как о структурно-функциональной единице наследственности. Мутации. Виды мутаций. Их биологическое значение.
  • 97. Варианты и типы наследования признаков (ад, ар, хр, хд, материнское, полигенное). Критерии наследования. Примеры заболеваний.
  • 98. Клинико-генеалогический метод. Особенности обследования больных с наследственной патологией. Понятие о микро-, макроаномалиях развития (примеры).
  • 99. Методы диагностики наследственных болезней обмена. Массовый и селективный скрининг.
  • 101. Характеристика и частота врожденной и наследственной патологии. Популяционно-статистический метод, значимость для практического здравоохранения.
  • 103. Наследственная моногенная патология, частота, принципы классификации. Пмд Дюшенна/Беккера.
  • 104. Общая характеристика хромосомных болезней. Особенности клинической картины, диагностика, прогноз и профилактика.
  • 105. Мультифакториальные заболевания. Этиологическая роль генетических и средовых факторов. Современные достижения генетики.
  • 106. Понятие, этиология макро- и микроаномалий развития, тератогенные периоды. Тактика профилактики и предупреждения (пренатальная диагностика, периконцепционная профилактика).
  • 107 Предупреждение наследственной патологии. Виды пренатальной диагностики, сроки и методики проведения.
  • Мукополисахаридоз
  • Мукополисахаридоз типа ih
  • Мукополисахаридоз типа I-s
  • Мукополисахаридоз типа II
  • Мукополисахаридоз типа III
  • Мукополисахаридоз типа IV
  • Другие типы мукополисахаридоза
  • Диагностика и лечение мукополисахаридоза
  • 110. Спинальные мышечные атрофии. Этиология, патогенез, клиника, диагностика, лечение и профилактика.
  • 111. Нейрофиброматоз. Этиология, патогенез, клиника, диагностика, лечение и профилактика.
  • 96. Современные представления о молекулярной организации генома. Понятие о гене как о структурно-функциональной единице наследственности. Мутации. Виды мутаций. Их биологическое значение.

    Ген - это структурная, функционально неделимая единица наследственной информации, участок молекулы ДНК, кодирующий синтез какой-либо макромолекулы (и-РНК, р-РНК, т-РНК, белок, гликоген, гликопептид и т.д.). Согласно экзонно-интронной модели организации генетического

    материала, ген представляет собой определенный участок ДНК, имеющий слева 5~ - конец (начало гена) и справа 3~- конец (конец гена), между которыми расположены экзоны и интроны.

    СХЕМА: тонкая структура гена.

    При исследовании ДНК перед транскрибируемыми участками были обнаружены нетранскрибируемые, которые были названы "промоторы", т.е. инициаторы транскрипции (связывают РНК-полимеразу). Установлено, что мутации в области промоторов могут резко снизить способность гена к экспрессии. Кроме того, выделены генные последовательности, усиливающие (энхансеры) и замедляющие (силансеры) ход транскрипции. В конце гена расположены последовательности – участок терминации транскрипции («стоп»-сигнал)

    В конце 70-х гг. установлено, что внутри гена имеются чередующиеся кодирующие или смысловые (экзоны) и некодирующие (интроны) последовательности.

    Имеются данные о том, что мутации в интронах, вплоть до их полной делеции, могут никак не сказываться на функции гена. Наряду с этим, известно, что интроны могут выполнять особую функциональную роль: они могут содержать специальные гены. Таким образом, роль интронных последовательностей еще предстоит изучить. Пример:

    ген VIII фактора свертываемости крови человека (187 тыс. п.н.), дефекты в котором приводят к гемофилии "А". В самом большом интроне гена (39 т.п.н.) присутствуют последовательн в интрон гена. Транскрипция идет с ДНК оппозитной той, что несет интрон.

    Самый короткий ген - ген бетта-глобина - 1100 п.н., 3 экзона (90, 222, 126 п.н.) и 2 интрона (116, 646 п.н.). Ген фермента фенилаланин-4-гидроксилазы, мутации в котором приводят к развитию фенилкетонурии, относится к средним генам - 90 - 125 тыс. п.н., 13 экзонов и 12 интронов, причем доля интронов достигает 90%. Один из самых протяженных генов - ген дистрофина: 2 млн. 300 тыс. п.н., около 85 экзонов.

    Для систематизации информации о генах созданы компьютерные банки: Genebank, база данных MIM.

    Кроме ядерной ДНК у человека имеется митохондриальная, содержащая 2 гена, кодирующих р-РНК, 22 гена – т-РНК и 13 белок-кодирующих генов, несущих информацию о некоторых субъединицах тканевого окисления. Протяженность ДНК митохондрий около 16,5 тыс.пар нуклеотидов.

    Гены, имеющие сходную структуру и функции, были объединены в генные семейства. Существуют миозиновые, тубулиновые, миелиновые и другие семейства генов (более 100), а некоторые включают десятки групп родственных генов (суперсемейство цитохромов).

    При изучении генных семейств в них были выявлены так называемые «молчащие» гены, т.е. гены, для которых не были обнаружены продукты их экспрессии, что объясняется различными изменениями структуры таких генов (нонсенс-мутации, изменения на границе экзонов и интронов, отсутствие промоторных областей и др.). Они были названы псевдогенами. Вопросы об их назначении и происхождении остаются открытыми, однако при некоторых наследственных заболеваниях выявлены мутации в псевдогенах.

    Рассмотрим этапы генной экспрессии:

    1 этап: транскрипция, т.е. переписывание информации с ДНК на матричную или информационную РНК;

    2 этап: процессинг, включающий в свою очередь:

    Сплайсинг, т.е. процесс вырезания интронов рестриктазами и сшивание кодирующих последовательностей (экзонов);

    Кээпирование и полиаденирование терминирующих последовательностей модифицированных м-РНК, по-видимому, с целью защиты их от неблагоприятного воздействия субстратов при прохождении через ядерную мембрану и при функционировании в цитоплазме;

    3 этап: трансляция, т.е. перевод полинуклеотидной последовательности РНК в первичную полипептидную цепочку. Этот процесс происходит на рибосомах при участии р-РНК и т-РНК, а также полимераз и др. ферментов;

    4 этап: посттрансляционные модификации, когда окончательно формируется биологически активный субстрат.

    Вся эта последовательность превращений от ДНК до конечного продукта называется экспрессией гена, и на всех этапах могут возникать "дефекты метаболизма", что приводит к патологии (болезни нарушения экспрессии гена).

    На современном этапе установлено, что подавляющая часть геномной ДНК принадлежит некодирующим последовательностям, а гены занимают вряд ли более 10% всей нуклеиновой последовательности.

    Рассмотрим некоторые свойства генов:

    1) Дискретность действия, т.е. развитие различных признаков контролируется различными генами, локализация которых в хромосомах различна.

    2) Стабильность, т.е. при отсутствии мутаций ген передается в ряду поколений в неизменном виде.

    3) Специфичность действия, т.е. ген обуславливает развитие определенного признака или группы.

    4) Дозированность действия, т.е. ген обуславливает развитие признака до определенного количественного предела.

    5) Аллельное состояние, т.е. большинство генов существуют в виде 2-х и более альтернативных вариантов аллелей, которые локализованы в определенном локусе хромосомы. Если аллели идентичны по своему содержанию, то говорят о гомозиготном состоянии, если различны – о гетерозиготном.

    Стойкое, скачкообразное изменение в наследственном аппарате клетки, не связанное с обычной рекомбинацией генетического материала, называется мутацией.

    Виды мутаций:

    1) генные - изменение структуры или последовательности расположения в ДНК отдельных генов. Фенотипически при этом изменяется состав аминокислот в белках, кодируемых геном;

    2) хромосомные - изменение структуры хромосом (утрата или удлинение их участков). Фенотипически проявляются тоже через изменение состава белка;

    3) геномные - изменение числа хромосом (недостаток или избыток) в наборе, не сопровождаемое изменениями их структуры.

    По характеру изменения генетического материала (гена или хромосомы) выделяют следующие мутации: а) делеции - выпадение какого-либо участка гена или хромосомы; б) транслокации - перемещение участка; в) инверсии - поворот участка на 180° (хромосома перекручивается, гены располагаются в обратном порядке; г) дупликация - вставляется лишний ген.

    По причинному характеру выделяют спонтанные (самопроизвольные) мутации и индуцированные. Последние развиваются под влиянием мутагенных факторов, среди которых различают экзогенные и эндогенные.

    К экзогенным относятся:

    1. Физические мутагены: а) ионизирующее излучение (оказывает прямое воздействие на ДНК, изменяя последовательность нуклеиновых кислот); б) ультрафиолетовые лучи (в большой дозе вызывают метилирование ДНК); в) температура (мутагенным свойством обладает только перегревание).

    2. Химические мутагены: а) высокоактивные вещества; б) свободные радикалы; в) цитостатики и др.

    Все химические мутагены должны легко проникать в клетку и достигать ядра.

    3. Биологические факторы. Обычно это вирусы. Есть два пути их мутагенного воздействия: а) вирус непосредственно проникает в ДНК; б) в результате жизнедеятельности вирусов образуются продукты распада, которые являются мутагенными.

    Эндогенные химические мутагены образуются на путях обмена веществ в организме - перекись водорода и липидные перекиси, а также свободные кислородные радикалы.

    Мутации могут происходить как в соматических, так и в половых клетках (гаметические мутации). В первом случае последствия связаны только с судьбой данного организма, а во втором - последствия сказываются на судьбе потомства.

    И, наконец, нужно помнить, что мутация не всегда влечет за собой изменения в организме, так как:

    1) не каждая замена азотистого основания в молекуле ДНК приводит к ошибке при ее редупликации;

    2) не всякое аминокислотное замещение в молекуле белков приводит к нарушению ее конформации;

    3) только 5 % генов функционирует, а остальные находятся в репрессированном состоянии и не транскрибируются.

  • Ген , или наследственный фактор , - это участок молекулы ДНК (у многих вирусов РНК), кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК .

    Общее число генов в клетке высших организмов по разным оценкам составляет 50-200 тыс. Каждому структурному гену соответствует определенный белок. Гены, кодирующие синтез белка у эукариот, состоят из нескольких элементов.

    Прежде всего это регуляторная зона (область), которая оказывает влияние на активность гена в разные периоды жизни организма. Регуляторная зона включает промотор - нуклеотидная последовательность ДНК длиной до 80-100 пар нуклеотидов, которую узнает молекула фермента РНК-полиме-разы и соединяется с ней, чтобы начать транскрипцию данного гена. При этом промотор определяет, какая из цепей двойной спирали ДНК присоединит к себе РНК-полимеразу и тем самым будет служить матрицей для синтеза иРНК.

    У прокариот за промотором расположен оператор - участок ДНК, «узнаваемый» специфическими белками-репрессорами и регулирующий транскрипций отдельных генов. Оператор и управляемые им структурные гены в совокупности образуют функциональную единицу, называемую опероном .

    Кроме того, в хромосомах были найдены участки - усилители транскрипции , расположенные на большом расстоянии от кодирующей нуклеотидной последовательности гена и его промотора. Для нормальной работы гена очень важны также участки, расположенные в конце кодирующей последовательности и служащие сигналом остановки транскрипции. Их называют терминаторами .

    Важная особенность генов эукариотических организмов - их прерывистость. В отличие от иРНК прокариот, включающей всю нуклеотидную последовательность структурного гена, иРНК эукариот содержит кодирующие участки - экзоны - чередующиеся с некодирующими - интронами . По размерам интроны варьируют от нескольких единиц до нескольких тысяч нуклеотидных пар; при этом их длина может быть больше длины экзонов, а число интронов в составе гена может достигать двух-трех десятков.

    По завершении транскрипции из молекулы иРНК, содержащей как экзоны, так и интроны, последние вырезаются фементами в ходе процессинга . Далее кодирующие участки экзоны сливаются в единую молекулу. Этот процесс получил название сплайсинг РНК. Экзоны соединяются в молекулу транслируемой иРНК в том же порядке, в котором они располагаются в ДНК. Преобразованная таким образом иРНК называется зрелой иРНК.

    Структура гена вирусов отражает генетическую организацию клетки хозяина. Так, гены бактериофагов собраны в рпероны и не имеют интронов, а вирусы эукариот их имеют.

    План.

    1. Введение

    2. Понятие «ген». Развитие представлений о нем

    3. Структура генов. Классификация генов

    4. Функции генов

    5. Современные представления о генотипе.

    6. Заключение

    7. Список использованной литературы.


    Введение.

    Цель моего реферата – попытка раскрыть фундаментального понятия современной генетики – понятия «ген». Генетика – молодая наука, она начала развиваться только в XX веке. Генетика изучает законы двух фундаментальных свойств живых организмов - наследственности и изменчивости, лежащие в основе эволюции органического мира и деятельности человека по созданию новых сортов культурных растений, пород животных и штаммов микроорганизмов.

    Наследственность – это свойство организма передавать свои признаки и особенности развития следующим поколениям.

    Изменчивость – это свойство организмов приобретать новые признаки в процессе индивидуального развития.

    Оба этих фундаментальных свойств организмов (и наследственность, и изменчивость) осуществляются генами. Гены хранят и передают информацию об организме последующим поколениям.


    Понятие «ген». Развитие представлений о нем.

    Ген – функциональная единицанаследственного материала. Ген (от греч. genos - род, происхождение) – участок молекулы геномной нуклеиновой кислоты, характеризуемый специфической для него последовательностью нуклеотидов, представляющий единицу функции, отличной от функций других генов, и способный изменяться путем мутирования.

    От гипотетических дискретных наследственных факторов до локализованных в хромосомах и молекулах ДНК генов. Долгое время ген рассматривали как минимальную часть наследственного материала (генома), обеспечивающую развитие определенного признака у организмов данного вида. Однако каким образом функционирует ген, оставалось неясным. Термин ген предложен В. Иогансеном в 1909 году, однако проникновение в его сущность связано с именем Г. Менделя, который еще в 1860-х гг. ввел термин «наследственный фактор» и на основе точных экспериментов сделал гениальные обобщения относительно свойств и поведения наследственных факторов при передаче информации от родителей потомкам, которые в последующем легли в основу теории гена. Это следующие фундаментальные свойства наследственных факторов – генов:

    1) наличие альтернативных наследственных факторов для развития каждого конкретного признака организма (в современном представлении доминантный и рецессивный аллели гена).

    2) Парность наследственных факторов, определяющих развитие признака (у диплоидного организма). Существенный вывод: наследуются не признаки, а от родителей к потомкам передаются вместе с гаметами гены. Из этих двух положений был развит принцип аллелизма.

    3) Относительное постоянство гена.

    Мендель не имел никаких сведений о местонахождении наследственных факторов в клетке, и тем более об их химической природе и механизме влияния на признак, т. е. наследственный фактор в начале 20 века выступал как условная единица наследственности.

    Дальнейшая конкретизация представлений о гене связана с работами школы американского биолога Т. Х. Моргана. Введя в генетические исследования плодовую мушку-дрозофилу, удалось существенно увеличить разрешающую способность генетического анализа и на основе синтеза генетических и цитологических представлений доказать существование материальной структуры наследственности – хромосом, в которых локализованы гены.

    Доказательствами хромосомной локализации генов явились: открытие генов, наследующихся сцеплено с полом (локализация генов в половых хромосомах, X или Y); сцепленное наследование группы признаков. Было показано наличие определенного числа групп сцепления генов, соответственно гаплоидному числу хромосом конкретного биологического вида. Кроме того, были получены генетические и цитологические доказательства кроссинговера – обмена генами между гомологичными хромосомами, приводящего к рекомбинации генов. Величина генетической рекомбинации (процент кроссинговера-перекреста) отражает расстояние между генами одной группы сцепления: чем дальше отстоят друг от друга гены, тем больше процент кроссинговера.

    Таким образом, было доказано, что гены в хромосоме располагаются в линейном порядке, и каждый ген имеет свое определенное местоположение – локус. Соответственно открылась возможность построения плана взаимного расположения в хромосоме известных генов с указанием относительных расстояний между ними, выраженных в процентах перекреста (генетические карты) и идентифицировать местоположение гена в хромосоме (цитологические карты).

    В 1945 г. Дж. Бидлом и Э. Татумом была сформулирована гипотеза, которую можно выразить формулой «Один ген - один фермент». Согласно этой гипотезе, каждая стадия метаболического процесса, приводящая к образованию в организме (клетке) какого-то продукта, катализируется белком-ферментом, за синтез которого отвечает один ген.

    Позднее было показано, что многие белки имеют четвертичную структуру, в образовании которой принимают участие разные пептидные цепи. Поэтому формула, отражающая связь между геном и признаком, была несколько преобразована: «Один ген - один полипептид».

    Изучение химической организации Э. Чаргаффом наследственного материала и процесса реализации генетической информации привело к формированию представления о гене как о фрагменте молекулы ДНК, транскрибирующемся в виде молекулы РНК, которая кодирует аминокислотную последовательность пептида или имеет самостоятельное значение (тРНК и рРНК).

    Также ценные сведения о структуре ДНК дали результаты рентгеноструктурного анализа. Рентгеновские лучи, проходя через кристалл ДНК, претерпевают дифракцию, т.е. отклоняются в определенных направлениях. Степень и характер отклонения зависят от структуры самой молекулы. Анализ дифракционных рентгенограмм привел к заключению, что азотистые основания уложены на подобие стопки тарелок. Рентгенограммы позволили выявить в ДНК 3 главных периода: 0,34, 2 и 3,4, которые оказались размерами в модели ДНК, предложенной Дж.Уотсоном и Ф.Криком. 0,34 нм – расстояние между последовательными нуклеотидами, 2 нм – толщина цепи, 3,4 нм – расстояние между последовательными витками спирали.

    В конце двадцатых годов советские генетики А. С. Серебровский и Н. П. Дубинин экспериментально показали, что ген не является единицей мутации, что он имеет сложную структуру: состоит из нескольких субъединиц, способных самостоятельно мутировать (ступенчатый аллелизм, или центровая теория гена). Весь ген (базиген) может состоять из отдельных центров, трансгенов, каждый из которых несет сходную функцию. Мутация может нарушать деятельность одного из трансгенов, не затрагивая других.

    Несколько позже идея о сложном строении гена была подкреплена экспериментами по внутригенному кроссинговеру на дрозофиле по локусам lozenge, white и др. (работы Э. Льюиса, М. Грина и др.).

    Таким образом, к 1950 году ген представлялся как участок хромосомы, контролирующий развитие определенного признака, имеющий определенную линейную протяженность и способный мутировать в разных участках и быть разделенным кроссинговером. Ген комплексен, так как его отдельные участки могут различаться по функциям, и в их совместной деятельности существует определенная субординация.

    Схема участка ДНК.

    Структура генов.

    Ген представляет собой последовательность нуклеотидов ДНК размером от нескольких сотен до миллиона пар нуклеотидов, в которых закодирована генетическая информация о первичной структуре белка (число и последовательность аминокислот). Для регулярного правильного считывания информации в гене должны присутствовать: кодон инициации, множество смысловых кодонов и кодон терминации. Три подряд расположенных нуклеотида представляют собой кодон, который и определяет, какая аминокислота будет располагаться в данной позиции в белке. Например, в молекуле ДНК последовательность оснований ТАС является кодоном для аминокислоты метионина, а последовательность ТТТ кодирует фенилаланин. В молекуле иРНК вместо тимина (Т) присутствует основание урацил (У). Таблица генетического кода во всех руководствах представлена именно символами иРНК. Из 64 возможных кодонов смысловыми являются 61, а три триплета - УАА, УАГ, УГА - не кодируют аминокислоты и поэтому были названы бессмысленными, однако на самом деле они представляют собой знаки терминации трансляции.

    Для прокариот характерна относительно простая структура генов. Так, структурный ген бактерии, фага или вируса, как правило, контролирует одну ферментативную реакцию. Специфичным для прокариот является оперонная система организации нескольких генов. Гены одного оперона (участка генетического материала, состоящего из 1, 2 и более сцепленных структурных генов, которые кодируют белки (ферменты), осуществляющие последовательные этапы биосинтеза какого-либо метаболита; в оперон эукариот входит, как правило, 1 структурный ген; оперон содержит регуляторные элементы) расположены в кольцевой хромосоме бактерии рядом и контролируют ферменты, осуществляющие последовательные или близкие реакции синтеза (лактозный, гистидиновый и др. опероны).

    Структура генов у бактеориофагов и вирусов в основном схожа с бактериями, но более усложнена и сопряжена с геномом хозяев. Например, у фагов и вирусов обнаружено перекрывание генов, а полная зависимость вирусов эукариот от метаболизма клетки-хозяина привела к появлению экзон-интронной структуры генов.

    Эукариотические гены, в отличие от бактериальных, имеют прерывистое мозаичное строение. Кодирующие последовательности (экзоны) перемежаются с некодирующими (интронами). Экзон [от англ. ex(pressi)on - выражение, выразительность] - участок гена, несущий информацию о первичной структуре белка. В гене экзоны разделены некодирующими участками - интронами. Интрон (от лат. inter - между) - участок гена, не несущий информацию о первичной структуре белка и расположенный между кодирующими участками - экзонами. В результате структурные гены эукариот имеют более длинную нуклеотидную последовательность, чем соответствующая зрелая иРНК, последовательность нуклеотидов в которой соответствует экзонам. В процессе транскрипции информация о гене списывается с ДНК на промежуточную иРНК, состоящую из экзонов и интронов. Затем специфические ферменты - рестриктазы - разрезают эту про-иРНК по границам экзон-интрон, после чего экзонные участки ферментативно соединяются вместе, образуя зрелую иРНК (так называемый сплайсинг). Количество интронов может варьировать в разных генах от нуля до многих десятков, а длина - от нескольких пар оснований до нескольких тысяч.

    Ген может кодировать различные РНК-продукты путем изменения инициирующих и терминирующих кодонов, а также альтернативного сплайсинга. Альтернативная экспрессия гена осуществляется и путем использования различных сочетаний экзонов в зрелой иРНК, причем полипептиды, синтезированные на таких иРНК, будут различаться как по количеству аминокислотных остатков, так и по их составу.

    Наряду со структурными и регуляторными генами обнаружены участки повторяющихся нуклеотидных последовательностей, функции которых изучены недостаточно, а также мигрирующие элементы (мобильные гены), способные перемещаться по геному. Найдены также так называемые псевдогены у эукариот, которые представляют собой копии известных генов, расположенные в других частях генома и лишенные интронов или инактивированные мутациями.


    Классификация генов.

    Накопленные знания о структуре, функциях, характере взаимодействия, экспрессии, мутабильности и других свойствах генов породили несколько вариантов классификации генов.

    По месту локализации генов в структурах клетки различают расположенные в хромосомах ядра ядерные гены и цитоплазматические гены, локализация которых связана с хлоропластами и митохондриями.

    По функциональному значению различают структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены - последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.).

    По влиянию на физиологические процессы в клетке различают летальные, условно летальные, супервитальные гены, гены-мутаторы, гены-антимутаторы и др.

    Следует отметить, что любые биохимические и биологические процессы в организме находятся под генным контролем. Так, деление клеток (митоз, мейоз) контролируется несколькими десятками генов; группы генов осуществляют контроль восстановления генетических повреждений ДНК (репарация). Онкогены и гены - супрессоры опухолей участвуют в процессах нормального деления клеток. Индивидуальное развитие организма (онтогенез) контролируется многими сотнями генов. Мутации в генах приводят к измененному синтезу белковых продуктов и нарушению биохимических или физиологических процессов.

    Гомеозисные мутации у дрозофилы позволили открыть существование генов, нормальной функцией которых является выбор или поддержание определенного пути эмбрионального развития, по которому следуют клетки. Каждый путь развития характеризуется экспрессией определенного набора генов, действие которых приводит к появлению конечного результата: глаза, голова грудь, брюшко, крыло, ноги и т. д. Исследования генов комплекса bithorax дрозофилы американским генетиком Льюисом показали, что это гигантский кластер тесно сцепленных генов, функция которых необходима для нормальной сегментации груди (thorax) и брюшка (abdomen). Подобные гены получили название гомеобоксных. Гомеобоксные гены расположены в ДНК группами и проявляют свое действие строго последовательно. Такие гены обнаружены и у млекопитающих, и они имеют высокую гомологию (сходство).

    Функции генов.

    В процессе реализации наследственной информации, заключенной в гене, проявляется целый ряд его свойств. Определяя возможность развития отдельного качества, присущего данной клетке или организму, ген характеризуется дискретностью действия (от лат. discretus - разделенный, прерывистый), прерывностью (интроны и экзоны). Дискретность наследственного материала, предположение о которой высказал еще Г. Мендель, подразумевает делимость его на части, являющиеся элементарными единицами, - гены. В настоящее время ген рассматривают как единицу генетической функции. Он представляет собой минимальное количество наследственного материала, которое необходимо для синтеза тРНК, рРНК или полипептида с определенными свойствами. Ген несет ответственность за формирование и передачу по наследству отдельного признака или свойства клеток, организмов данного вида. Кроме того, изменение структуры гена, возникающее в разных его участках, в конечном итоге приводит к изменению соответствующего элементарного признака.

    Ввиду того что в гене заключается информация об аминокислотной последовательности определенного полипептида, его действие является специфичным. Однако в некоторых случаях одна и та же нуклеотидная последовательность может детерминировать синтез не одного, а нескольких полипептидов. Это наблюдается в случае альтернативного сплайсинга у эукариот и при перекрывании генов у фагов и прокариот. Очевидно, такую способность следует оценить как множественное, или плейотропное, действие гена (хотя традиционно под плейотропным действием гена принято понимать участие его продукта – полипептида – в разных биохимических процессах, имеющих отношение к формированию различных сложных признаков). Например, участие фермента в ускорении определенной реакции (см. рис.), которая является звеном нескольких биохимических процессов, делает зависимыми результаты этих процессов от нормального функционирования гена, кодирующего этот белок. Нарушение реакции A→B, катализируемой белком α, в результате мутации гена ведет к выключению последующих этапов формирования признаков D и E.

    Определяя возможность транскрибирования мРНК для синтеза конкретной полипептидной цепи, ген характеризуется дозированно стью действия, т.е. количественной зависимостью результата его экспрессии от дозы соответствующего аллеля этого гена. Примером может служить зависимость степени нарушения транспортных свойств гемоглобина у человека при серповидно-клеточной анемии от дозы аллеля НЬS. Наличие в генотипе человека двойной дозы этого аллеля, приводящего к изменению структуры β-глобиновых цепей гемоглобина, сопровождается грубым нарушением формы эритроцитов и развитием клинически выраженной картины анемии вплоть до гибели. У носителей только одного аллеля НЬS при нормальном втором аллеле лишь незначительно изменяется форма эритроцитов и анемия не развивается, а организм характеризуется практически нормальной жизнеспособностью.

    Современные представления о генотипе.

    Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. Например, у некоторых видов появляются гаплоидные организмы, которые развиваются на основе одинарного набора генов, заключенного в геноме. Так, у ряда видов членистоногих гаплоидными являются самцы, развивающиеся из неоплодотворенных яйцеклеток.

    При половом размножении в процессе оплодотворения объединяются геномы двух родительских половых клеток, образуя генотип нового организма. Все соматические клетки такого организма обладают двойным набором генов, полученных от обоих родителей в виде определенных аллелей. Таким образом, генотип - это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе – кариотипе.

    Кариотип – диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом. Ниже приведены количества хромосом соматических клеток некоторых видов организмов.

    Если число хромосом в гаплоидном наборе половых клеток обозначить n , то общая формула кариотипа будет выглядеть как 2п, где значение n различно у разных видов. Являясь видовой характеристикой организмов, кариотип может отличаться у отдельных особей некоторыми частными особенностями. Например, у представителей разного пола, имеются в основном одинаковые пары хромосом (аутосомы), но их кариотипы отличаются по одной паре хромосом (гетерохромосомы, или половые хромосомы). Иногда эти различия состоят в разном количестве гетерохромосом у самок и самцов. Чаще различия касаются строения половых хромосом, обозначаемых разными буквами – X и Y (XX или XY).

    Каждый вид хромосом в кариотипе, содержащий определенный комплекс генов, представлен двумя гомологами, унаследованными от родителей с их половыми клетками. Двойной набор генов, заключенный в кариотипе,- генотип – это уникальное сочетание парных аллелей генома. В генотипе содержится программа развития конкретной особи.

    Выяснилось, что множество хронических болезней человека есть проявление генетического груза, риск их развития может быть предсказан задолго до рождения ребенка на свет, и уже появились практические возможности снизить давление этого груза.

    Генетический груз включает, с одной стороны, патологические генные мутации, наследуемые от родителей и прародителей, и называемые серегационным грузом, если в виде болезни проявляются рецессивные или нелетальные доминантные мутации генов (от латинского segregatio – выщепление).

    С другой стороны, определенную часть этого груза составляют новые, вновь возникшие генные мутации (в результате мутагенных влияний внешней среды). Они не прослеживаются в восходящих поколениях и составляют так называемый мутационный генетический груз.

    Согласно данным Н.П.Дубинина, частота спонтанных генных мутаций установлена в пределах 10-10 на геном на поколение. В геноме человека имеется около 100000 генов. Расчеты показывают, что примерно у 10% людей возникают новые мутации, вызванные мутагенным воздействием факторов окружающей среды (радиационный фон Земли, действие продуктов сжигания топлива, влияния вирусов). Безусловно, частота мутаций будет значительно выше в условиях антропогенного загрязнения внешней среды. Каждый человек наследует, как минимум, 10 скрытых мутаций, опасных для здоровья. В целом по А. Кнудсону (1986), величина постнатального генетического груза составляет 0.2 т.е. у 20% членов популяции существует вероятность развития наследственных болезней (моногенных, полигенных или связанных с мутациями генов соматических клеток).

    Генетический груз проявляется, как бесплодие и спонтанные аборты, выкидыши и мертворождения, врожденные пороки и умственная отсталость. Он определяет риск гемолитической болезни новорожденных, проявления несовместимости матери и плода по ряду антигенов.

    Реализация наследственной информации, заключенной в генотипе организма,- это сложный процесс, который требует тонкой регуляции для того, чтобы в клетках разной тканевой принадлежности в определенное время в процессе развития организма обеспечить синтез специфических белков в необходимом количестве.

    Все клетки многоклеточного организма, возникая из зиготы путем митоза, получают полноценный набор генетической информации. Несмотря на это, они отличаются друг от друга по морфологии, биохимическим и функциональным свойствам. В основе этих различий лежит активное функционирование в разных клетках неодинаковых частей генома. Большая часть генома находится в клетках организма в неактивном, репрессированном, состоянии, и только 7-10% генов дерепрессированы, т.е. активно транскрибируются. Спектр функционирующих генов зависит от тканевой принадлежности клетки, от периода ее жизненного цикла и стадии индивидуального развития организма.

    Основная масса генов, активно функционирующих в большинстве клеток организма на протяжении онтогенеза, - это гены, которые обеспечивают синтез белков общего назначения (белки рибосом, гистоны, тубулины и т.д.), тРНК и рРНК.

    Фенотип – совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа. Сюда относятся не только внешние признаки, но и внутренние: анатомические, физиологические, биохимические. Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т.е. свой фенотип, который сформировался в определенных условиях среды.

    Определенная роль в эволюции геномов как про-, так и эукариотических клеток принадлежит так называемым подвижным генетическим элементам - транспозонам. Они представляют собой автономные единицы, несущие в нуклеотидной последовательности информацию о структуре особых белков, которые обеспечивают их способность к перемещению из одного участка генома в другой. Такое перемещение - траспозиция - может происходить в строго определенные участки хромосом, узнаваемые этими специфическими белками. Транспозиция предполагает репликацию нуклеотидной последовательности подвижного генетического элемента и встраивание копии в ДНК с сохранением другой копии в прежнем месте.

    Установлена также способность подвижных генетических элементов к точному вырезанию и удалению их из хромосомы. Перемещение таких нуклеотидных последовательностей в пределах генома может влиять на регуляцию экспрессии генов, которые прилежат к месту встраивания этих элементов. В результате таких перемещений могут активироваться ранее не активные гены, и наоборот.

    Обнаружение подвижных генетических элементов в геномах как про-, так и эукариот указывает на определенные эволюционные преимущества, связанные с их наличием в наследственном материале. Возможно, рекомбинационные процессы, обеспечиваемые подвижными генетическими элементами, имеют немаловажное значение в структурной эволюции генома.

    Наряду с транспозонами, не способными очевидно, существовать вне генома и образовывать свободные молекулы ДНК, описаны элементы, обнаруживаемые как в составе генома, так и вне его. Существование таких подвижных элементов дает возможность обсуждать роль горизонтального переноса генетического материала в эволюции генома.

    Если описанные выше изменения структуры генома передаются из поколения в поколение организмов одного и того же вида, т.е. по вертикали, то горизонтальный перенос генетической информации может происходить и между организмами разных видов, одновременно существующими на Земле. В настоящее время доказана возможность изменения наследственных свойств у бактерий путем введения в бактериальную клетку чужеродной ДНК при конъюгации или с помощью фагов. Оказывается, чуже­родную ДНК можно ввести и в эукариотическую клетку, где она будет сохраняться как внехромосомный элемент или интегрироваться в геном и экспрессироваться.

    Недавно получены данные, свидетельствующие о том, что гены могут переходить от одного эукариотического организма к другому и даже от эукариот к прокариотам, хотя это происходит крайне редко. Примером могут служить данные о несовпадении скоростей эволюции отдельных последовательностей генов гистонов у некоторых видов морских ежей. Это можно объяснить относительно поздним по сравнению с временем дивергенции этих видов горизонтальным переносом указанных последовательностей, проявляющих большее сходство, чем этого можно было ожидать.

    Заключение.

    В заключении хотелось бы сказать о значении гена.

    Ген – функциональная единица наследственности. Он играет важную роль в наследовании признаков разными организмами. На генном уровне организации наследственного материала обеспечиваются индивидуальное наследование и индивидуальное изменение отдельных признаков и свойств клеток, организмов данного вида.

    Реальное существование генного уровня организации наследственного материала дало возможность исследователям при анализе характера наследования отдельных признаков открыть главные закономерности, которые легли в основу наших представлений об организации материального носителя наследственности и изменчивости. Процессы наследственности и изменчивости непосредственно влияют на ход на такой глобальный процесс как эволюция.

    Мутации генов тоже оказывают большое влияние на организм.

    Таким образом, значение гена велико для всех элементов нашей жизни.


    Список использованной литературы.

    1. Айала Ф., Кайдегер Дж… Современная генетика: т.2. М.: Мир, 1988.

    2. Биология: в 2 кн. Кн. 1: Жизнь. Гены. Клетка. Онтогенез. Человек./ под ред. В.Н.Ярыгина.

    3. Биология: Большой энциклопедический словарь/ гл. ред. М.С.Гиляров.

    4. Вилли К., Детье В… Биология (биологические процессы и законы). М.: Мир, 1975.

    В начале 40-х годов ХХ века Дж. Бидл и Э. Тейтум, анализируя результаты генетических исследований, проведенных на грибе нейроспоре, пришли к выводу, что каждый ген контролирует синтез какого-либо фермента, и сформулировали принцип «один ген - один фермент».

    Однако уже в 1961 году Ф. Жакобу, Ж. Л. Моно и А. Львову удалось расшифровать структуру гена кишечной палочки и исследовать регуляцию его активности. За это открытие им в 1965 году была присуждена Нобелевская премия по физиологии и медицине.

    В процессе исследования, кроме структурных генов, контролирующих развитие определенных признаков, им удалось выявить и регуляторные, основной функцией которых является проявление признаков, кодируемых другими генами.

    Структура прокариотического гена. Структурный ген прокариот имеет сложное строение, поскольку в его состав входят регуляторные участки и кодирующие последовательности. К регуляторным участкам относятся промотор, оператор и терминатор. Промотором называют участок гена, к которому прикрепляется фермент РНК-полимераза, обеспечивающий синтез иРНК в процессе транскрипции. С оператором , располагающимся между промотором и структурной последовательностью, может связываться белок-репрессор , не позволяющий РНК-полимеразе начать считывание наследственной информации с кодирующей последовательности, и только его удаление позволяет начать транскрипцию. Структура репрессора закодирована обычно в регуляторном гене, находящемся в другом участке хромосомы. Считывание информации заканчивается на участке гена, который называется терминатором .

    Кодирующая последовательность структурного гена содержит информацию о последовательности аминокислот в соответствующем белке. Кодирующую последовательность упрокариот называют цистроном , а совокупность кодирующих и регуляторных участков гена прокариот - опероном . В целом прокариоты, к которым относится и кишечная палочка, имеют сравнительно небольшое количество генов, расположенных в единственной кольцевой хромосоме.

    Цитоплазма прокариот может содержать также дополнительные небольшие кольцевые или незамкнутые молекулы ДНК, которые называются плазмидами. Плазмиды способны встраиваться в хромосомы и передаваться от одной клетки к другой. Они могут нести информацию о половых признаках, патогенности и устойчивости к антибиотикам.

    Структура эукариотического гена. В отличие отпрокариот, гены эукариот не имеют оперонной структуры, поскольку не содержат оператора, и каждый структурный ген сопровождается только промотором и терминатором. Кроме того, в генах эукариот значащие участки (экзоны ) чередуются с незначащими (интронами ), которые полностью переписываются на иРНК, а затем вырезаются в процессе их созревания. Биологическая роль интронов состоит в снижении вероятности мутаций в значащих участках. Регуляция генов эукариот намного сложнее, нежели описанная для прокариот.

    Геном человека. В каждой клетке человека в 46 хромосомах находится около 2 м ДНК, плотно упакованной в двойную спираль, которая состоит примерно из 3,2 × 10 9 нуклеотидных пар, что обеспечивает около 10 1900000000 возможных уникальных комбинаций. К концу 80-х годов ХХ века было известно расположение примерно 1500 генов человека, однако их общее количество оценивали примерно в 100 тыс., поскольку только наследственных болезней у человека имеется примерно 10 тыс., не говоря уже о количестве разнообразных белков, содержащихся в клетках.

    В 1988 году стартовал международный проект «Геном человека», который к началу XXI века закончился полной расшифровкой последовательности нуклеотидов. Он дал возможность понять, что два разных человека на 99,9 % имеют сходные последовательности нуклеотидов, и лишь остающиеся 0,1 % определяют нашу индивидуальность. Всего было обнаружено примерно 30–40 тыс. структурных генов, однако затем их количество было снижено до 25–30 тыс. Среди этих генов имеются не только уникальные, но и повторяющиеся сотни и тысячи раз. Тем не менее данные гены кодируют гораздо большее количество белков, например десятки тысяч защитных белков - иммуноглобулинов.

    97 % нашего генома является генетическим «мусором», который существует только потому, что умеет хорошо воспроизводиться (РНК, которые транскрибируются на этих участках, никогда не покидают ядро). Например, среди наших генов есть не только «человеческие» гены, но и 60 % генов, похожих на гены мушки дрозофилы, а с шимпанзе нас роднит до 99 % генов.

    Параллельно с расшифровкой генома происходило и картирование хромосом, вследствие этого удалось не только обнаружить, но и определить расположение некоторых генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов.

    Расшифровка генома человека пока не дает прямого эффекта, поскольку мы получили своеобразную инструкцию по сборке такого сложного организма, как человек, но не научились изготавливать его или хотя бы исправлять погрешности в нем. Тем не менее эра молекулярной медицины уже на пороге, во всем мире идет разработка так называемых генопрепаратов, которые смогут блокировать, удалять или даже замещать патологические гены у живых людей, а не только в оплодотворенной яйцеклетке.

    Не следует забывать и о том, что в эукариотических клетках ДНК содержится не только в ядре, но также в митохондриях и пластидах. В отличие от ядерного генома, организация генов митохондрий и пластид имеет много общего с организацией генома прокариот. Несмотря на то что эти органеллы несут менее 1 % наследственной информации клетки и не кодируют даже полного набора белков, необходимых для их собственного функционирования, они способны существенно влиять на некоторые признаки организма. Так, пестролистность у растений хлорофитума, плюща и других наследует незначительное число потомков даже при скрещивании двух пестролистных растений. Это обусловлено тем, что пластиды и митохондрии передаются большей частью с цитоплазмой яйцеклетки, поэтому такая наследственность называется материнской, или цитоплазматической, в отличие от генотипической, которая локализуется в ядре.

    Задачи с решениями

    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны.

    Обмен веществ - одно из основных свойств живых систем, он характеризуется тем, что происходит

    1. избирательное реагирование на внешние воздействия окружающей среды
    2. изменение интенсивности физиологических процессов и функций с различными периодами колебаний
    3. передача из поколения в поколение признаков и свойств
    4. поглощение необходимых веществ и выделение продуктов жизнедеятельности
    5. поддержание относительно постоянного физико-химического состава внутренней среды

    Решение

    Обмен веществ и энергии (метаболизм)– это основная функция организма. Под обменом веществ и энергии понимают совокупность процессов поступления питательных и биологически активных веществ в пищеварительный аппарат, превращения или освобождения их и всасывание продуктов превращения и освобождения веществ в кровь и лимфу, распределение, превращение и использование всосавшихся веществ в тканях органов, выделение конечных продуктов превращения и использования, вредных для организма. Обмен веществ представляет собой единство двух процессов: ассимиляции и диссимиляции. Ассимиляция – совокупность процессов, обеспечивающих образование в организме свойственных ему веществ из веществ, поступивших в организм из внешней среды. Диссимиляция – совокупность процессов ферментативного расщепления сложных веществ. Оба процесса взаимосвязаны и возможны только при наличии другого. Интенсивность одного процесса зависит от интенсивности другого. Обмены различных веществ в организме тесно взаимосвязаны и поддерживают постоянство физико-химического состава внутренней среды.

    Ответ: 45

    Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Процессы деления клеток изучают с помощью методов

    1. дифференциального центрифугирования
    2. культуры клеток
    3. микроскопии
    4. микрохирургии
    5. фото- и киносъёмки

    Решение

    Процессы деления клеток можно наблюдать под микроскопом, данный метод носит название микроскопия. Современные микроскопы оснащены фото и кинокамерой, поэтому процесс деления можно еще фотографировать и записывать.