Структура и свойства популяций экологические пирамиды. Экологические пирамиды: численности, биомассы, энергии. Сукцессии и их виды

Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.

Типы экологических пирамид

  1. пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.

  1. пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 , кг/га, т/км 2 или на объем - г/м 3 (рис.4)

Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

  1. пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Рассмотрим превращение энергии в экосистеме на примере простой пастбищной трофической цепи, в которой имеется всего три трофических уровня.

  1. уровень - травянистые растения,
  2. уровень - травоядные млекопитающие, например, зайцы
  3. уровень - хищные млекопитающие, например, лисы

Питательные вещества создаются в процессе фотосинтеза растениями, которые из неорганических веществ (вода, углекислый газ, минеральные соли и т.д.) с использованием энергии солнечного света образуют органические вещества и кислород, а также АТФ. Часть электромагнитной энергии солнечного излучения при этом переходит в энергию химических связей синтезируемых органических веществ.

Все органическое вещество, создаваемое в процессе фотосинтеза называется валовой первичной продукцией (ВПП). Часть энергии валовой первичной продукции расходуется на дыхание, в результате чего образуется чистая первичная продукция (ЧПП), которая и является тем самым веществом, которое поступает на второй трофический уровень и используется зайцами.

Пусть ВПП составляет 200 условных единиц энергии, а затраты растений на дыхание (R) - 50%, т.е. 100 условных единиц энергии. Тогда чистая первичная продукция будет равна: ЧПП = ВПП - R (100 = 200 - 100), т.е. на второй трофический уровень к зайцам поступит 100 условных единиц энергии.

Однако, в силу разных причин зайцы способны потребить лишь некоторую долю ЧПП (в противном случае исчезли бы ресурсы для развития живой материи), существенная же ее часть, в виде отмерших органических остатков (подземные части растений, твердая древесина стеблей, ветвей и т.д.) не способна поедаться зайцами. Она поступает в детритные пищевые цепи и (или) подвергается разложению редуцентами (F). Другая часть идет на построение новых клеток (численность популяции, прирост зайцев - Р) и обеспечение энергетического обмена или дыхания (R).

В этом случае, согласно балансовому подходу, балансовое равенство расхода энергии (С) будет выглядеть следующим образом: С = Р + R + F, т.е. поступившая на второй трофический уровень энергия будет израсходована, согласно закону Линдемана, на прирост популяции - Р - 10%, остальные 90% будут израсходованы на дыхание и удаление неусвоенной пищи.

Таким образом, в экосистемах с повышением трофического уровня происходит быстрое уменьшение энергии, накапливаемой в телах живых организмов. Отсюда ясно почему каждый последующий уровень всегда будет меньше предыдущего и почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей: к конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой потоки вещества и энергии в биогеоценозе, основу его функциональной организации.

Эко­ло­ги­че­ские пи­ра­ми­ды - это гра­фи­че­ские мо­де­ли, отража­ю­щие число осо­бей (пи­ра­ми­да чисел), ко­ли­че­ство их био­мас­сы (пи­ра­ми­да био­масс) или за­клю­чён­ной в них энер­гии (пи­ра­ми­да энер­гии) на каж­дом тро­фи­че­ском уров­не и ука­зы­ва­ю­щие на по­ни­же­ние всех по­ка­за­те­лей с повыше­ни­ем трофи­че­ско­го уров­ня.

Различают три типа экологических пирамид: энергии, биомассы и численности. О пирамиде энергии мы говорили в предыдущем разделе «Перенос энергии в экосистемах». Соотношение живого вещества на разных уровнях подчиняется в целом тому же правилу, что и соотношение поступающей энергии: чем выше уровень, тем ниже общая биомасса и численность составляющих её организмов.

Пирамида биомассы

Пирамиды биомассы, так же, как и численности, могут быть не только прямыми, но и перевернутыми, свойственные водным экосистемам.

Пирамида экологическая (трофическая) графическое изображение количественных соотношений между трофическими уровнями биоценоза -продуцентами, консументами (отдельно каждого уровня) и редуцентами, выраженное в их численности (пирамида чисел), биомассе (пирамида биомасс) или скорости нарастания биомассы (пирамида энергий).

Пирамида биомасс - соотношение между продуцентами, консументами и редуцентами в экосистеме, выраженное в их массе и изображенное в виде трофической модели.

Пирамиды биомассы, так же, как и численности, могут быть не только прямыми, но и перевернутыми (рис. 12.38). Перевернутые пирамиды биомассы свойственны водным экосистемам, в которых первичные продуценты, например, фитопланктонные водоросли, очень быстро делятся, а их потребители - зоопланк-тонные ракообразные - гораздо крупнее, но имеют длительный цикл воспроизводства. В частности, это относится к пресноводной среде, где первичная продуктивность обеспечивается микроскопическими организмами, скорость обмена веществ которых повышена, т. е. биомасса мала, производительность велика.

Пирамиды биомассы представляют более фундаментальный интерес, так как в них устранен «физический» фактор и четко показаны количественные соотношения биомасс. Если организмы не слишком сильно различаются по размеру, то, обозначив на трофических уровнях общую массу особей, можно получить ступенчатую пирамиду. Но если организмы низших уровней в среднем мельче организмов высших уровней, то имеет место обращенная пирамида биомассы. Например, в экосистемах с очень мелкими продуцентами и крупными консументами общая масса последних может быть в любой данный момент выше общей массы продуцентов. Для пирамид биомассы можно сделать несколько обобщений.

Пирамида биомасс показывает изменение биомасс на каждом следующем трофическом уровне: для наземных экосистем пирамида биомасс сужается кверху, для экосистемы океана - имеет перевернутый характер (сужается книзу), что связано с быстрым потреблением фитопланктона консументами.

Пирамида численности

Пирамида численности — экологическая пирамида, отражающая число особей на каждом пищевом уровне. Пирамида чисел не всегда дает четкое понятие о структуре пищевых цепей, так как в ней не учитываются размеры и масса особей, продолжительность жизни, интенсивность обмена веществ по главная тенденция - уменьшение числа особей от звена к звену — в большинстве случаев прослеживается.

Так, в степной экосистеме была установлена следующая численность особей: продуценты — 150 000, травоядные консументы 20 000, плотоядные консументы 9000 экз/ар (Одум, 1075), что в пересчете на гектар составит цифры в 100 раз большие. Биоценоз луга характеризуемся следующей численностью особей на площади 4 тыс. м2: продуцентов — 5 842 424, растительноядных консументов I порядка — 708 024, плотоядных консументов II порядка - 35 490, плотоядных консументов III порядка — 3.

Перевёрнутые пирамиды

Если скорость размножения популяции жертвы высока, то даже при низкой биомассе такая популяция может быть достаточным источником пищи для хищников, имеющих более высокую биомассу, но низкую скорость размножения. По этой причине пирамиды численности могут быть перевернутыми, т.е. плотность организмов в данный конкретный момент времени на низком трофическом уровне может быть ниже, чем плотность организмов на высоком уровне. Например, на одном дереве может жить и кормиться множество насекомых (перевернутая пирамида численности).

Перевернутая пирамида биомасс свойственна морским экосистемам, где первичные продуценты (фитопланктонные водоросли) очень быстро делятся (имеют большой репродуктивный потенциал и быструю смену поколений). В океане за год может смениться до 50 поколений фитопланктона. Потребители фитопланктона гораздо крупнее, но размножаются значительно медленнее. За то время, пока хищные рыбы (а тем более моржи и киты) накопят свою биомассу, сменится множество поколений фитопланктона, суммарная биомасса которых намного больше.

Пирамидами биомасс не учитывается продолжительность существования поколений особей на разных трофических уровнях и скорость образования и выедания биомассы. Вот почему универсальным способом выражения трофической структуры экосистем являются пирамиды скоростей образования живого вещества, т.е. продуктивности. Их обычно называют пирамидами энергий, имея в виду энергетическое выражение продукции.

Каждая экосистема состоит из нескольких трофических (пищевых) уровней , слагающихся в определенную структуру. Трофическую структуру принято изображать в видеэкологических пирамид.

В 1927 году американский эколог и зоолог Чарлз Элтон предложил графическую модель экологической пирамиды. Базой пирамиды является первый трофический уровень, состоящий из продуцентов. Выше расположены уровни консументов различных порядков. Иначе говоря, глядя на экологическую пирамиду, мы понимаем, как в данной экосистеме соотносятся все ее члены по нескольким факторам.

Изображаются уровни экологической пирамиды в виде нескольких прямоугольных или трапециевидных ярусов, размер которых соотнесен либо с количеством участников каждого уровня пищевой цепи, либо с их массой, либо с энергией.

Три вида экологических пирамид

1. Пирамида чисел (или численности) сообщает нам количество живых организмов на каждом уровне. Например, для пропитания одной совы необходимо 12 мышей, а им, в свою очередь, требуется 300 колосьев ржи. Нередко случается, что пирамида чисел перевернута (такую пирамиду иначе называют обращенной). Она может описывать, скажем, лесную пищевую цепь, в которой продуцентами выступают деревья, а первичными консументами - насекомые. Одно дерево является пищей для мириадов насекомых.

2. Пирамида биомасс описывает соотношение масс организмов нескольких трофических уровней. Как правило, в биоценозах на суше масса продуцентов значительно больше, нежели в каждом последующем звене пищевой цепи, а масса консументов первого уровня превышает массу консументов второго уровня и т. д.

Водные экосистемы также могут характеризоваться перевернутыми пирамидами биомасс, в которых масса консументов оказывается большей, чем масса продуцентов. Океанический зоопланктон, питающийся фитопланктоном, намного превышает его по совокупной массе. Казалось бы, с такой скоростью поглощения, фитопланктон должен был бы исчезнуть, однако, его спасает высокая скорость роста.

3. Пирамида энергии исследует величину потока энергии, проходящего через пищевую цепь от базового уровня к наивысшему. Структура биоценоза в высокой степени зависит от скорости продуцирования пищи на всех трофических уровнях. Американский ученый Раймонд Линдеман выяснил, что на каждом уровне теряется до 90% поступившей на него энергии (так называемый «Закон 10%»).

Зачем нужны экологические пирамиды?

Пирамиды чисел и биомассописывают экосистему в ее статике, поскольку рассчитывают количество или массу участников экосистемы за фиксированный временной отрезок. Они не призваны давать информацию о трофической структуре экосистемы в динамике, однако же позволяют решать задачи, связанные с сохранением устойчивости экосистемы, и предвидеть возможные опасности.

Классический пример нарушения устойчивости - завоз кроликов на Австралийский континент. Из-за высокой скорости размножения их количество стало столь огромным, что наносило вред сельскому хозяйству, лишая пищи овец и крупный скот - таким образом, только один вид консументов (кролики) монополизировал продуцент (траву) в данной экосистеме.

Пирамида энергии , в отличие от вышеназванных пирамид, динамична, она передает скорость прохождения количества энергии через все трофические уровни. Ее задача - дать представление о функциональной организации экосистемы.

Хочешь сдать экзамен на отлично? Жми сюда -

Понятие о трофических уровнях

Трофический уровень - это совокупность организмов, занимающих определенное положение в общей цепи питания. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой поток вещества и энергии в экосистеме, основу ее организации.

Трофическая структура экосистемы

В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или ихбиомассой, или заключенной в них энергией, рассчитанными на единицу площади в единицу времени.

Трофическую структуру обычно изображают в виде экологических пирамид. Эту графическую модель разработал в 1927 г. американский зоолог Чарльз Элтон. Основанием пирамиды служит первый трофический уровень - уровень продуцентов, а следующие этажи пирамиды образованы последующими уровнями - консументами различных порядков. Высота всех блоков одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне. Различают три способа построения экологических пирамид.

1. Пирамида чисел (численностей) отражает численность отдельных организмов на каждом уровне. Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. Иногда пирамиды чисел могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых).

2. Пирамида биомасс - соотношение масс организмов разных трофических уровней. Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой. Так, для образования 1 кг говядины необходимо 70-90 кг свежей травы.

В водных экосистемах можно также получить обращенную, или перевернутую, пирамиду биомасс, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса в данный момент его может быть меньше, нежели у потребителей-консументов (киты, крупные рыбы, моллюски).

Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем. Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

3. Пирамида энергии отражает величину потока энергии, скорость про хождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.

Установлено, что максимальная величина энергии, передающейся на следующий трофический уровень, может в некоторых случаях составлять 30 % от предыдущего, и это в лучшем случае. Во многих биоценозах, пищевых цепях величина передаваемой энергии может составлять всего лишь 1 %.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов) , согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10 % поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90 % всей энергии, которая расходуется на поддержание их жизнедеятельности.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

Вот почему цепи питания обычно не могут иметь более 3-5 (редко 6) звеньев, а экологические пирамиды не могут состоять из большого количества этажей. К конечному звену пищевой цепи так же, как и к верхнему этажу экологической пирамиды, будет поступать так мало энергии, что ее не хватит в случае увеличения числа организмов.

Этому утверждению можно найти объяснение, проследив, куда тратится энергия потребленной пищи: часть ее идет на построение новых клеток, т.е. на прирост, часть энергии пищи расходуется на обеспечение энергетического обмена или на дыхание. Поскольку усвояемость пищи не может быть полной, т.е. 100 %, то часть неусвоенной пищи в виде экскрементов удаляется из организма.

Учитывая, что энергия, затраченная на дыхание, не передается на следующий трофический уровень и уходит из экосистемы, становится ясным, почему каждый последующий уровень всегда будет меньше предыдущего.

Именно поэтому большие хищные животные всегда редки. Поэтому также нет хищников, которые питались бы волками. В таком случае они просто не прокормились бы, поскольку волки немногочисленны.

Трофическая структура экосистемы выражается в сложных пищевых связях между составляющими ее видами. Экологические пирамиды чисел, биомассы и энергии, изображенные в виде графических моделей, выражают количественные соотношения разных по способу питания организмов: продуцентов, консументов и редуцентов.



Чарльз Эльтон предложил способ графического выражения отношений между трофическими уровнями, который стал едва ли не символом экологии как науки. Речь идет об экологических пирамидах . При построении экологических пирамид меры обилия представителей разных трофических уровней показывают в виде лежащих друг на друге прямоугольников. Обычно этот метод используют для описания пастбищных трофических цепей. Выделяют пирамиды численностей, биомасс и продуктивностей.

Построим несколько экологических пирамид и мы. Наши примеры будут достаточно условными: мы предположим, что трофические цепи, которые мы будем описывать, не имеют «разветвлений». Например, моделируя цепь клевер - овцы - волки, мы примем, что овцы питаются только клевером, а волки - только овцами, при этом нас будут интересовать отношения между этими трофическими уровнями в пределах какой-то экосистемы, где соотношение численностей рассматриваемых уровней достигло равновесия. Естественно, экологические пирамиды можно использовать и для описания естественных экосистем, а принятые нами упрощения нужны лишь для большей наглядности наших рассуждений.

Возвратимся к цепи клевер - овцы - волки. Оценив численности популяций в этой цепи, мы увидим, что отдельных растений клевера намного больше, чем овец, а овец - больше, чем волков. Такая пирамида (с основанием шире вершины) называют правильной или прямой . Однако не для всех пастбищных цепей пирамиды численностей будут правильными. Примером может быть цепь дубы - дубовые шелкопряды. На небольшом количестве крупных деревьев может обитать множество гусениц. Пирамида численностей будет для этой цепи перевернутой (рис. 3.13.1).

Рис. 3.13.1. Пирамиды численностей. А. прямая. Б. Перевернутая. Перевернутый характер второй пирамиды связан с отличиями особей по размерам

Несложно понять, что перевернутость второй пирамиды связана с отличиями особей продуцентов и консументов по их размерам. На основании данных о том, сколько весит средний дуб и средний шелкопряд, а также пирамиды их численностей, мы можем построить пирамиду биомасс . Естественно, она будет прямой (рис. 3.13.2).

Рис. 3.13.2. Пирамиды биомасс. А. прямая. Б. Перевернутая. Перевернутый характер второй пирамиды связан с различиями особей в «скорости жизни» - разной интенсивности протекания энергии через их биомассу

Могут ли пирамиды биомасс быть перевернутыми? Достаточно редко, но могут. Рассмотрим пастбищные трофические цепи толщи воды в океане. Как ни удивительно, биомасса продуцентов (планктонных водорослей) в таких цепях зачастую оказывается меньше биомассы консументов. Означает ли это, что консументы в таких цепях существуют не за счет продуцентов? Нет.

Понять сказанное поможет простая аналогия. Большой пруд может существовать благодаря впадающему в него маленькому ручейку, хотя в любой момент времени масса воды в пруду намного больше, чем в ручье. Понятно, что это становится возможным потому, что вода в ручье сменяется намного быстрее, чем в пруду. Так и в сообществах толщи воды энергия течет через разные трофические уровни с разной скоростью. Время смены биомассы фитопланктона измеряется часами, зоопланктона - днями, рыб и китов - неделями и месяцами. Чтобы учесть это различие, нам надо отразить в экологических пирамидах интенсивность потока энергии через каждый уровень. На основании данных о биомассе звеньев трофической цепи и о скорости ее смены мы можем построить пирамиду продуктивностей (или потоков энергии; рис. 3.13.3).

Рис. 3.13.3. Пирамиды продуктивности всегда являются прямыми

Такая пирамида всегда будет прямой. Первое начало термодинамики (закон сохранения энергии) «запрещает» такой пирамиде быть перевернутой, а второе - иметь «этажи» одинаковой ширины, ведь при каждом преобразовании энергии часть ее должна рассеиваться в виде тепла. Кстати, именно поэтому реальные трофические цепи не бывают очень длинными, а экологические пирамиды - высокими. В любой действительной экосистеме до консумента X уровня дошло бы столь мало энергии (после десяти последовательных преобразований!), что с территории, доступной для одной особи, не удалось бы собрать необходимое для нее количество энергии.

Теперь, познакомившись с логикой, по которой строятся экологические пирамиды, рассмотрим два более конкретных примера. Юджин Одум рассчитал параметры условной пищевой цепи, в которой двенадцатилетний мальчик питался исключительно телятиной (учтите: есть только мясо противоестественно!), а телята - только люцерной (это уже более физиологично, не считая того, что и мальчику, и телятам надо начинать жизнь, питаясь молоком своих матерей). Характеристики такой пирамиды приведены в табл. 3.13.1.

Таблица 3.13.1. Пример экологических пирамид для условной трофической цепи

Численность

Биомасса

Продуктивность

Использованное излучение

А следующий пример (рис. 3.13.4) касается реальных данных о биомассе нескольких видов млекопитающих в североамериканском листопадном лесу. Как вы можете увидеть, наивысшую биомассу имеют растительноядные млекопитающие, а наименьшую - плотоядные, что и следовало ожидать, исходя из изложенных здесь соображений.

Рис. 3.13.4. Биомасса нескольких видов млекопитающих североамериканского листопадного леса

Как вы поняли, экологические пирамиды не могут быть очень высокими, потому что при переходе с уровня на уровень часть энергии теряется. Однако разные организмы теряют разное количество энергии. В разных сообществах средний уровень экологической эффективности отличается и тесно связан с количеством трофических уровней, как это показано в табл. 3.13.2.

Таблица 3.13.2. Среднее число трофических уровней в разных биомах (Р. Риклефс, 1977)

Биом

Средняя экологическая эффективность (отношение продуктивности хищника к продуктивности жертвы)

Среднее количество трофических уровней

Открытый океан

Морское прибрежье

Тропический лес

Конечно, экологическая эффективность на разных трофических уровнях сильно отличается, и особенно она низка у основания экологических пирамид. Питание растительной пищей - более сложная биохимическая и физиологическая «задача», чем питание животной пищей. В большинстве наземных экосистем регистрируется избыток растительной пищи. Зато количество растительноядных животных (консументов I уровня) обычно хорошо контролируется плотоядными животными. Избыток организмов на этом уровне будет эффективно «выедаться» организмами следующего уровня.

Согласно гипотезе естественного равновесия, главным регулятором соотношения трофических уровней является вершинный хищник - консумент самого высокого уровня. Значит, в системе с четным числом трофических уровней эффективнее контролируются консументами нечетные уровни (1-й, 3-й, 5-й…), а с нечетным числом уровней - четные. Поскольку в наземных экосистемах труднее всего контролировать именно первый уровень, уровень продуцентов, можно ожидать, что в наземных системах чаще должно наблюдаться нечетное число трофических уровней. Наблюдения подтверждают это предположение.